Loading...
HomeMy WebLinkAboutFINAL HYDROLOGY_DRAINAGE REPORT MISSION TRAIL APARTMENTS MISSION TRAIL APARTMENTS CITY OF LAKE ELSINORE DRAINAGE REPORT Prepared for: C&C Development 14211 Yorba Street, Suite 200 Tustin, CA 92780 November, 2017 Revised March, 2018 QgQ��ss�o� A t � 735 7 CXP & jilau sr CI It. gT�OFC�LIFa`� Prepared by: �n W/LSON'MIKAMI •CORP©RATION �� 9 CORPORATE PARK•SUITE I00•IRVINE•CA•90606 PHDNE. (94 9) 6 79-0090 FAX: (94 9) 6 79-009 I TABLE OF CONTENTS I. Introduction Project Description 1 Purpose 2 Methodology 2 Conclusion 3 Project Location Map Fig. 1 RCFC&WCS Soil Group Map Plate C-1.41 Fig. 2 II. References III. Appendices • Proposed Condition Rational Method Hydrology (Off-site Q 10 & Q 100 year) and Hydrology Map • Proposed Condition Rational Method Hydrology (On-site Q 10 & Q 100 year) and Hydrology Map • Existing Condition Rational Method Hydrology Combined Off-Site and On- Site Hydrology (Q 10 & Q100)and Hydrology Map • Existing Condition Rational Method Hydrology On-Site Flows Only (Q 10 & Q 100) and Hydrology Map • Proposed Condition Rational Method Hydrology On-Site Flows Only (Q10 &Q100) and Hydrology Map • Unit Hydrograph Calculations • Flood Routing Calculations • Mission Trail Street Capacity Calculations • On-Site Parking Lot Capacity Calculations • Catch Basin Calculations • Pump Discharge Calculations • Hydraulic Calculations Existing Summerly Development Laterals"B-6 through B-8" Proposed RCFC&WCD Line "A" , Lat"A-2"through "A-5" Proposed Private Line "B" , Lat"B-1", Lat"B-2", and Lat"A-1" • CDS Hydraulic Calculations and Specifications • City of Wildomar Master Drainage Plan S-1, Approved Hydrology and Map (For Reference Only) • Riverside County Flood Control and Water Conservation District Sedco Master Drainage Plan (For Reference Only) • Mission Trail Street Improvement Plans (For Reference Only) • Proposed Mission Trail Apartment RCFC&WCD Drainage Plans I. INTRODUCTION A. PROJECT DESCRIPTION: The Mission Trail Apartment Project is a proposed 5.4 acre site within the City of Lake Elsinore. (Refer to Project Location Map, Figure 1). The proposed development is within the central portion of the 3,000 acre East Lake Specific Plan, which was originally adopted by the City of Lake Elsinore City Council in 1993. The site will consist of 4 apartment buildings composed of 81 units. The project is located west of Mission Trail between Elberta/Hidden Trail and Sedco Road. The northern half of the site will be drained by the proposed 78" RCP storm drain system designated as Line"A". This will be a County of Riverside Flood Control owned and operated storm drain system. It will replace an existing drainage channel located within the project boundary which ties into two existing 24" RCP storm drain pipes running under Mission Trail. The southern half of the site will be drained by the proposed private storm drain system Line"B". Both systems outlet into a proposed retention basin located at the west end of the development. This basin will outlet over a proposed weir to reduce the outlet flow velocities and disperse the flow as it leaves the property. A dewatering pump will drain the dead storage of the basin after each major rain event. The Riverside County and Flood Control and Water Conservation District (RCFC&WCD) Sedco Drainage Plan shows a future Line"A"at Mission Trail and Sylvester Road and Line "B" at Elberta Road and Mission Trail. The map is included in the Appendix of this report for reference. However, the Lake Elsinore revised MDP shows these flows to travel south within Mission Trail and drain to the future storm drain line E-14 (the afore mentioned proposed 78" Line `A") This new MDP will supersede the current Sedco Drainage Plan as agreed upon by all pertinent parties. In the ultimate condition, a future extension of Line"A" within the City of Wildomar city limits will collect off-site tributary flows north of the proposed development. In the interim condition, a proposed extension of Line"A" will connect to an off-site flow-by combination grate and side opening inlet at the property line to alleviate the flooding within Mission Trail. B. PURPOSE: This drainage report is intended to analyze the proposed drainage facilities associated with the project improvements as well as the additional off-site flows tributary to the proposed drainage facilities both public and private. C. METHODOLOGY: The proposed condition was analyzed utilizing the Advanced Engineering Software (AES) package for Riverside County(RATSCX) (ref. 2). A rational method hydrology analysis was performed for the existing condition and the proposed conditions for the 10 and 100-year storm events. The results are included in the Appendix of this report. Currently, based on the approved Wildomar Drainage Master Plan S-1, an anticipated 100-year flow of 248.5 cfs from a total tributary drainage area of 98.1 acres will be collected within Mission Trail and surface drain south toward the proposed project site (see node 163 on off-site drainage interim condition hydrology map). A series of existing catch basins on Mission Trail will collect a portion of this street flow. These basin were designed to take only a portion of the proposed off-site flows into the Summerly Development Storm Drain System. The balance of the off-site flows bypass and continue toward the proposed development within Mission Trail. At the intersection of Elberta/Hidden Trail and Mission Trail, there is an anticipated 100-year flow of 222.0 cfs from a total tributary drainage area of 86.4 acres with the City of Wildomar. Conservatively adding these flows together with the expected upstream bypass flows yield a new 100-year flow tributary to the proposed development of 398.9 cfs in the interim condition. These interim off-site flows must be analyzed such that the proposed development as well as the existing Summerly development north of the property have sufficient protection during 100-year storm events. The street capacity calculations for Mission Trail show that the resulting water level of these interim flows exceed the R/W of Mission Trail adjacent the Summerly project. However, the expected water surface elevation is below the existing pads (see Section A-A). A combination basin in the flow-by condition is proposed at the north property line in Mission Trail to alleviate the flooding adjacent the proposed development. The resulting 10-year water surface is below the top of curb and the 100-year water surface is contained within the right-of-way (see Section B-B). The bypass flow from this basin as well as the flow along the undeveloped east side of Mission Trail collect at the low point in Mission Trail near the proposed entrance to the development. An expected 100-year flow of 216.3 cfs will pond below the proposed overflow location within the site(see Section C-C). Two catch basins(28 foot and 10 foot)will be located to the north and south of the entrance. These basins,as well as the existing 21' basin on the east side of the street,will collect and convey all off-site flows into the proposed drainage system Line"A" such that no public run-off enters the site. These flows will be collected and conveyed through the proposed development in the proposed 78"RCP RCFC&WCD facility. The off-site and on-site hydrology maps are included in the Appendix. The limits of ponding and overflow locations are also labeled. All existing and proposed structures maintain a level of protection required by RCFC&WCD. Per the conditions of approval#86,the drainage system shall be designed to ensure that runoff from a 10-year storm of 6 hours or 24 hours duration under the developed condition is equal or less than the runoff under the existing condition of the same storm frequency. These results are summarized in the tables below and the unit hydrographs and flood routing can be found in the Appendix of this report. On-Site Flows Only Storm Storm Pre- Post- Peak outflow Event Duration Development Development Out of the basin Flow(cfs) Flow(cfs) cfs) 10-Year 124 Hour 1.97 2.37 1.96 Combined Off-site and On-site Flows Storm Storm Pre- Post- Peak outflow Event Duration Development Development Out of the basin Flow(cfs) Flow(cfs) (cfs) 10-Year 1 24 Hour 48.6 50.7 48.5 A 100-year 24-hour storm event was routed through the proposed basin and the weir sized to accommodate the outflow. These flood routing calculations are included in the appendix of this report. The proposed weir length of 30 feet yields a maximum water depth of 4.38'. The basin bottom elevation is 1252.00,therefore the max water elevation is 1256.38 with a peak outflow of 148.4 cfs. The resulting velocity is 4.0 fps over the 30' wide staged weir. The dead storage of 0.42 ac-ft below the lowest elevation of the weir will be drained periodically by a 122 GPM pump such that the basin can be drained within 19 hours. The hydraulic calculation of the discharge pipe from the pump shows an outlet velocity of 5.5 fps. This pipe discharges onto the spillway and disperses over the spillway onto a rip-rap pad at non erosive velocities. The computer program, WSPG, was used to compute the hydraulics. A 100-year analysis was performed on the proposed storm drain systems for both the RCFC&WCD facilities and the privately maintained facilities. The hydraulic calculations are included in the Appendix of this report. D. CONCLUSION: These analyses and calculations confirm that the proposed storm drain system is adequate to transport the drainage off site. Additionally, protection of onsite structures will be maintained for the 100-year storm event. II. REFERENCES 1. Hydrology Manual, Riverside County Flood Control and Water Conservation District, April 1978. 2. Advanced Engineering Software (AES)RATSCX, 2003 3. Water Surface Pressure Gradient for Windows (WSPGW), 2005. S 2 R4/�RogO LAKESNORE CgNY�N ROAD DRIVE LAKE ELSINORE rs HEMLOCK STREET o �s o 4 Ma�ca �o�o �, PROJECT ono SITE A - � OLIVE ST. o Cs LEMON STREET VICINITY MAP NOT TO SCALE tr 1 G V R E 1, 0 A ffik IN NO, WIN �; ��`A ' �'i`' '�,�t 4 � y ``'s � � � �' ,�..�• may` ~` 4�'1 IF 1w cod gpmm \��'%fir'� Yam' • � , � A' /���" ����� '�7 � 7 � 1✓ ./� '��s`fro,•, w*.� ��'GP`��. � � � � ` '�, � �'"� _ 'l _.a' `;; eta.1�1f.',��/,d,�. '11�-'t ►`,�'�a`° `� I�r�j, '�.i+�+154� t o�r1 ` �'!✓t3 - '~`� �' 'yid/�$• ��'�, ,�®�,.,:; �����'� `� ��';�i�I/l�r' ,,, j�'X ,�.'��•,r� !'• V�.t�"» ,��� tlQi%; ��T��•�I�v�.Sr.�✓ U� (� 1 `�' Asa � .• y ;�„--' Mal WIM ' �� , i �fr r.•1s•• :b. R9�a` NifiFYar4 i(s'. a4 ..J� � •��+. �Mq1� ��r.��'�'�fIFI/ w • SOILSLEGEND HYDROLOGIC SOILS GROUP MAP • BOUNDARY _ A SOILS GROUP DESIGNATION • • 0 FEET 5000 III. APPENDICES PROPOSED CONDITION RATIONAL METHOD OFF-SITE HYDROLOGY RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 **+++++*+++++++*+*+++**+*+ DESCRIPTION OF STUDY xxxx*xx***************x*x* * MISSION TRAIL APARTMENTS OFF-SITE HYDROLOGY * 10-YEAR INTERIM CONDITION * BY KAM 030518 FILE NAME: MTOS10.DAT TIME/DATE OF STUDY: 10:14 03/05/2018 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ----------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.320 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.980 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.540 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4809628 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4792280 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 0.990 SLOPE OF INTENSITY DURATION CURVE = 0.4810 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* 1 RMH RC ver. 9.42 for Windows August 2015 RATIONAL METHOD HYDROLOGY Riverside County (C) 1992-2015 Jack P. Norris, P.E., Tel (951) 285-5007 JackNorris@verizon.net S/N 1 Jack P. Norris, RCE, 40019 Via Graziana, Murrieta CA 92562 File Program Files\Microsoft Visual Studio\VB98\RMH 9.41\Wil MDP Si alt2.RMR By Jack N. Work code Hydrology Job# 32236 46 records . Edited 10-07-2015 09:52 Run 10-07-2015 ---------------------------------- Description ----- Wildomar MDP subregion Sl -------------------------------------------------------------------------------- Frequency: 10-yr I=6. 994Tc-.48 Antecedent Moisture Condition (AMC)=2 Region from Plate D-4 . 1: Elsinore-Wildomar 10-yr 10-min I=2.32"/hr (input) , 10-yr 60-min I=0. 98"/hr (input) -Loglog slope of I-D curve=.48 (input) Initial area Tc by Kirpich formula: Tc = k(L3/H) •2 RI for urban covers assumes good residential/commercial landscaping. RI for undeveloped land is the average of natural cover RIs for entered soil & cover quality, from Plate D-5.5 (1) . Schematic diagram. Fields: Node number Record number + process name Streams: 1 2 3 4 5 6 7 8 101 181 108 121 171 131 141 151 1 Init 4 Init 12Init 19Init 26Init 31Init 351nit 391nit 102 182 109 122 172 132 142 152 2 NVC 5 Pipe 13 St 20 NMC 27 St 32 NMC 36 NVC 40 NVC 103 183 110 123 173 133 143 153 3. Pipe 6 Chan 14 S+P 21 NVC 28 S+P 33 NVC 37 NVC 41Pipe 104 <---- ill 124 1 134 144 1 8 Chan 16 S+P 22Pipe I 34Pipe 38Pipe 1 104 .5 112 125 1 1 154 <----' 9 Pipe 17Pipe 23Chan I I 43Pipe 105 113 126 161 <----' 1OPipe 18Pipe 24Pipe ( 45Pipe 106 248 127 I 162 llPipe 25Pipe I 46Pipe 107 128 <----' 163 30Pipe 129 Re d 1 Node 101 to 102 Initial subarea Stream Subarea #1 (S1A at ea corner of subregion] Elevation 19 0 to 1588 . 00 delta H=312 .0' Length=1000 ' Slope=.3120 Subarea: 11 .5 acre * Warning: Hydrology Man recommends against exceeding 10 acres. Soil: D Land use: Natural-Poor RI (AMC2)=88 Ai=. 00 Ap=1.00 ------------------------------- Hydrology Results ---- ------------------------ k=.530 Tc= 10. 60 min. I=2.252"/hr Q(subarea)=21.56 cfs Subarea Fp=.168"/hr C=.833 Q(tot)=21 .56 cfs ------------------------------- Stream 1 Sijmmar.v ----------------------- ecard 17 Node 112 to 113 Pipe flow, program sized Subarea Q enters stream at downstream node. Str am #3 Subarea #14 [Sl in Tokay Rd to Crescent Av] Eleva ion 1309.00 to 1290. 00 delta H=19.0' Length=330 ' Slo e=.05758 Subarea- 4 acres Soil. Land use. 14 - 20 du/acre (VHDR) Pervious tion RI (AMC2)=32 Ai=.80 Ap=. 0 Pipe: Velocity eadloss coefficient=0.2 n=0 .013 Allowable pipe ' ze range: 18" to 96" ->------------------ -------- Pipe Hydraulics Re ults ----------------------------- 1 21" pipe (d=1.75' ) =38 .33 cfs D=1.49' /d=. 854 Sf=.05473 Losses: Entrance+minor= .2V2/2g=0. 95' Fri ion=18 .06' Total=19.02 ' X-Sect A=2 . 19 sf V=17 .5 fps Tt=0 .31 n. _- -------------------------- --- Hydro gy Results --------------------------------- Tc= 11 .59 + . 31 = 11. 90 min. I=2 . 1 "/hr Q(subarea)=6.79 cfs Subarea Fp=1.216"/hr C=.797 t00 0 =45.12 cfs ----------------------------------- ream 3 Summary -=-------_�---------- At node 113 L=2065 ' Fp=1.091" hr Ai=0. 629 q=1 . 68 cfs/ac A = 26.90 acres Tc = 11. 90 inute Q = 45.12 cfs Record 18 Node 113 to 8 Pipe fl w, program sized lit Stream #3 [to S2 node 248 pro pipe @ Mission Trail & 0 've St] Elevation 1290 .00 o 1264 . 00 delta H=26.0 ' Le th=850 ' Slope=. 03059 Subarea: 0 acre Pipe: Velocit headloss coefficient=0. 2 n=0. 013 Allowable pe size range: 18" to 96" ---- ------ --------------- Pipe Hydraulics Results --- ----------_---- - ------ 1 27" pip (d=2 .25' ) Q=45. 12 cfs D=1.59' D/d=.705 Sf=. 2976 Losses: ntrance+minor=0.2V2/2g=0 .71' Friction=25 .30' Tot a =26.01' X-Sect =2 . 99 sf V=15.07 fps Tt=0 .94 min. /Atn -------------------"------ Hydrology Results -------=------ -----------=-=--- .90 + .94 = 12 .84 min. I=2 . 054"/hr Q (subarea) =. 00 cfs t)=45 . 12 cfs -------------------------- Stream 3 Summary --------------____- ----- ------- e 248 L=2915' Fp=1. 091"/hr Ai=0. 629 q=1. 68 cfs/ac .90 acres Tc = 12.84 minutes Q = 45.12 cfs New Stream Record 19 Node 121 to 122 Initial subarea Stream #4 Subarea #15 [SIM] Elevation 1942 .00 to 1680 .00 delta H=262. 0 ' Length=700 ' Slope=. 37429 Subarea: 5 . 6 acres Soil. D Land use: Natural-Poor RI (AMC2) =88 Ai=.00 Ap=1. 00 ------------------------ ------ Hydrology Results ------------_-------------__--- k=.530 Tc= 8 .86 min. I=2 . 454"/hr Q(subarea)=11 .51 cfs Subarea Fp=. 169"/hr C=. 838 Q(tot)=11.51 cfs ------------------------------- Stream 4 Summary ----------__---------------------- At node 122 L=700 ' Fp=0 .169"/hr Ai=O q=2. 06 cfs/ac A = 5.60 acres Tc = 8.86 minutes Q = 11.51 ofs Record 20 Node 122 to 123 Natural mountain channel Subarea Q enters stream uniformly distributed along reach. Stream 44 Subarea #16 [SIN] Elevation 1680. 00 to 1560.00 delta H=120 .0 ' Length=770' Slope=.15584 Map slope adjusted to . 1382 effective slope per RCFCD Hyd Man Plate D-6.2 Subarea: 12.2 acres Soil: D Land use : Natural-Poor RI (AMC2) =88 Ai=.00 Ap=1.00 ------.-------------------------- Hydraulics Results ----------___------------------- V avg = 5 . 8 fps for avg Q of 22 .7 cfs. Tt = 2 .21 min. -----_------------------------- Hydrology Results ----- __-_------------------ -_ Tc= 8 .86 + 2 .21 = 11 . 08 min. I=2.205"/hr Q (subarea) =22.37 cfs Subarea Fp=.168"/hr C=. 831 Q (tot)=33 .88 cfs -------------------------------- Stream 4 Summary - ------__-------------------__- At node 123 L=1470' Fp=0. 168"/hr Ai=O q=1. 90 cfs/ac A = 17.80 acres To = 11.08 minutes Q = 33.88 cfs Record 21 Node 123 to 124 Natural valley channel Subarea Q enters stream uniformly distributed along reach. Stream #4 Subarea #17 [S10 to exist culvert under freeway] Elevation 1560. 00 to 1430. 00 delta H=130.0 ' Length=1440' Slope=.09028 Subarea: 14 .5 acres Area portions, soil & land use: 3. 9 acres soil A, Natural-Poor RI (AMC2)=62, Ap=1 10. 6 acres soil D, Natural-Poor RI (AMC2) =88, Ap=1 Averages : RI=81 Ai=O Ai=O ------------------------------- Hydraulics Results ---_- V avg = 11.3 fps for avg Q of 45. 29 cfs . Tt = 2 .12 min. _- _---------------------------- Hydrology Results -------------- --------------- Tc= 11 .08 + 2 .12 = 13.20 min. I=2 .027"/hr Q(subarea)=22 .82 cfs Subarea Fp=.279"/hr C=.776 Q(tot) =56.70 cfs -------------- --- - ------------_- Stream 4 Summary ---------------------------- At node 124 L=2910 ' Fp=0.218"/hr Ai=O q=1.76 cfs/ac A = 32.30 acres To = 13.20 minutes Q = 56.70 cfs Record 22 Node 124 to 125 Pipe flow, specified size & number Subarea Q enters stream at downstream node. Stream #4 Subarea #18 [SIP freeway, in existing culvert] Elevation 1430. 00 to 1390.00 delta H=40. 0 ' Length=390 ' Slope=.10256 Subarea: 4 .7 acres Soil: A Land use: Specified Ai Pervious portion RI (AMC2)=32 Ai=.40 Ap=.60 Pipe: Velocity headloss coefficient=1 .2 n=0. 024 1 42" pipe (d=3.50 ' ) Q=56.7 cfs ------------------------------ Pipe Hydraulics Results --------------------_--------- D=1.42 ' D/d=.405 Sf=.09121 Losses: Entrance+minor=1.2V2/2g=4 . 50' Friction=35.57 ' Total=40 . 07 ' X-Sect A=3 . 65 sf V=15.52 fps Tt=0. 42 min. ---------------------------------- Hydrology Results --;__----- -----_------------- Tc= 13.20 + .42 = 13. 62 min. I=1. 997"/hr Q(subarea) =5. 47 cfs Subarea Fp=1 .171"/hr C=. 583 Q(tot)=62 . 17 cfs -------------------------------- Si-rPsm 4 Siimmaru ------------------------------- At node 125 L=3300' Fp=0 .339"/hr Ai=0.051 q=1. 68 cfs/ac A = 37.00 aores Tc = 13.62 minutes Q = 62.17 cfs Record 23 Node 125 to 126 Prismoidal channel with side inflow Subarea Q enters stream uniformly distributed along reach. Stream #4 Subarea #19 [S1Q thru pvt prop to Lakeview Ter. Elberta Rd is too high to route flow thru. ] Elevation 1400 .00 to 1348 .00 delta H=52 .0 ' Length=650 ' Slope=.0800 Subarea: 11 .1 acres Soil: A Land use : 5 - 8 du/acre (MHDR) Pervious portion RI (AMC2)=32 Ai=.55 Ap=. 45 Channel: Max d=3 ' Bottom width=0' Sideslope Z=1.5: 1 (h:v) n=0.014 Hydraulics Results -_--------- Q(avg)=69. 39 cfs A(avg)=3. 1 sf V(avg)=22. 54 fps Tt=.48 min. At end of reach: Q=76. 61 cfs D=1. 46' A=3.2 sf V=23.82 fps Sf=.0800 ----------------------------------- Hydrology Results -------------------------------- Tc= 13. 62 + . 48 = 14 .04 min. I=1. 968"/hr Q(subarea)=14.44 cfs Subarea Fp=1.161"/hr C=. 661 Q(tot)=76. 61 cfs ------------------------------- Stream 4 Summary ------------------------------- At node 126 L=3950 ' Fp=0.529"/hr Ai=0. 166 q=1. 59 cfs/ac A = 48.10 acres To = 14.04 minutes Q = 76.61 cfs Record 24 Node 126 to 127 Pipe flow, program sized Subarea Q enters stream at downstream node. Stream #4 Subarea 420 [SIR in prop FCD MDP Line B: 24" . ] Elevation 1348 . 00 to 1312 .00 delta H=36.0' Length=530' Slope=.06792 Subarea: 8 . 4 acres Soil: A Land use: 14 - 20 du/acre (VHDR) Pervious portion RI (AMC2) =32 Ai=.80 Ap=.20 Pipe: Velocity headloss coefficient=1.2 n=0.013 Allowable pipe size range: 18" to 96" ----------------------------- Pipe Hydraulics Results ---------------------------- 1 27" pipe (d=2.25' ) Q=76. 61 cfs D=2 . 04 ' D/d=. 90'/ St=.05356 Losses: Entrance+minor=l .2V2/2g=7 . 62' Friction=28 .39' Total=36.01' X-Sect A=3. 79 sf V=20 .22 fps Tt=0.44 min. ------------------ ----- Hydrology Results ---------------- Tc= 14 . 04 + .44 = 14 .47 min. I=1. 939"/hr Q(subarea)=12 . 92 cfs Subarea Fp=1 . 151"/hr C=.793 Q (tot)=89.53 cfs ----=----- ---------------------- Stream 4 Summary ------------------------------- At node 127 L=4480 ' Fp=0. 621"/hr Ai=0.26 q=1.58 cfs/ac A = 56.50 acres To = 14.47 minutes Q = 89.53 cfs Record 25 Node 127 to 128 Pipe flow, program sized Subarea Q enters stream at downstream node. Stream #4 Subarea #21 [S1Z4 trib from both sides of Elberta Rd to Mission Trail in FCD MDP Line B: 30"1 Elevation 1312. 00 to 1282 .00 delta H=30 .0' Length=500 ' Slope=.0600 Subarea: 16.2 acres Soil: A Land use: 14 - 20 du/acre (VHDR) Pervious portion RI (AMC2)=32 Ai=. 80 Ap=.20 Pipe: Velocity headloss coefficient=0 .2 n=0. 013 Allowable pipe size range: 18" to 96" --- pi ncz WvHrattl i rc RPenl tv -------------------------------- 1 30" pipe (d=2 .50' ) Q=89. 53 cfs D=1.88 ' D/d=.752 Sf=.05688 Losses: Entrance+minor=0.2V2/2g=1.59' Friction=28 .44 ' Total=30. 03' X-Sect A=3 .96 sf V=22 .60 fps Tt=0.37 min. _- --------------------------- Hydrology Results ------------------------------ Tc= 14.47 + .37 = 14 .84 min. I=1 .916"/hr Q(subarea)=24 .60 cfs Subarea Fp=1 .143"/hr C=.793 Q(tot)=114 .14 cfs ------------------------------- Stream 4 Summary ------------------------------- At node 128 L=4980 ' Fp=0.738"/hr Ai=0 .381 q=1.57 cfs/ac A = 72 .70 acres Te = 14.84 minutes Q = 114. 1 cfs This stream is to confluence with 1 other per record 28 New Stream Record 26 Node 171 to 172 Initial subarea Stream #5 subarea #22 [S1Z2 from freeway to Lakeview Ter @ Mariposa Rd] Elevation 1412 .00 to 1352 .00 delta H=60.0 ' Length=480' Slope=. 1250 Subarea: 5 . 9 acres Soil: A , Land use: 5 - 8 du/acre (MHDR) Pervious portion RI (AMC2) =32 Ai=. 55 Ap=.45 --------=---------- ---- --- Hydrology Results ------------------------------ k=.383 Tc= 6. 86 min. I=2 .775"/hr Q(subarea)=11.39 cfs Subarea Fp=1.402"/hr C=. 695 Q(tot)=11.39 cfs ------------------------------- Stream 5 Summary -------------_-------- ------- At node 172 L=480 ' Fp=1 .402"/hr Ai=0.55 q=1. 93 cfs/ac A = 5. 90 acres Tc = 6.86 minutes Q = 11.39 cfs Record 27 Node 172 to 173 Street flow Subarea Q enters stream uniformly distributed along reach. Stream #5 Subarea #23 [S1Z3 in Mariposa Rd to Mission Trail. Some of subarea not trib to Mariposa. ] Elevation 1352 .00 to 1284 .00 delta H=68 .0 ' Length=1120 ' Slope=. 06071 Subarea: 7 . 4 acres Area portions, soil & land use: 6.2 acres soil A, 14 - 20 du/acre (VHDR) Pervious portion RI (AMC2)=32, Ap=0.2 1.2 acres soil A, Commercial/Industrial Pervious portion RI (AMC2) =32, Ap=0.1 Averages: RI=32 Ai=0.82 Ai=0.82 Street: Template 1 Riv Co Local (Std 105-2) Half--width (C/L to flowline)=20 ' CF=6" Batter=0.25 h/v Gutter width=24" Hike=1.5" Lip=0.375" X-fall=0.021 / ' Parkway 10 ' wide @ 0 .021 /' (net width from CF=9.88 ' ) n(road) =. 015 n(parkway)=. 025 Flow designated to start on 1 side ---------------------------- Street Hydraulics Results -------=-------------------- Street capacity to T.C. 1 side = 31.7 cfs. Tt=2 .58 min. based on Qavg of 18 .52 cfs on one side of street. Davg=. 43' Aavg=2 .56 sf Vavg=7 .23 fps At end of reach: Q=25 . 66 cfs D=.47 ' Flow area=3.29 sf V=7 . 81 fps D*V=3. 66 Flooded width one side=17 .75 ' Sf=. 06072 Flow cross-section, 4 : 1 vertical exageration: --------------------------------- Hydrology Results --------------------------------- Tc= 6 . 86 + 2 .58 = 9 .44 min. I=2 .381"/hr Q(subarea)=14 .27 cfs Subarea Fp=1.29411/hr C=. 810 Q(tot)=25. 66 cfs -----------=-------------------- Stream 5 Summary - ----------_------------------- At node 173 L=1600 ' Fp=1. 342"/hr Ai=0. 698 q=1 .93 cfs/ac A = 13.30 acres Tc = 9.44 minutes Q = 25.66 cfs Record 28 Node 173 to 128 Street + Pipe Pipe Q enters at upstream node_ Subarea Q enters street uniformly distributed along reach. Street Q is its capacity, Pipe carries excess . Tc is based on shorter travel time of the pipe or street. Stream 45 Subarea #24 (Mission Trail from Mariposa Rd to junction at Elberta Rd) Elevation 1284.00 to 1282 .00 delta H=2 .0' Length=300 ' Slope=.00667 Subarea: 0 . 441 acre Soil: A Land use : Commercial/Industrial Pervious portion RI (AMC2) =32 Ai=.90 Ap=.10 Street: Template 5 Riv Co Arterial 128 ' R/W (Std 92-1) Half-width (C/L to flowline) =43 ' CF=8" Batter=0.25 h/v Gutter width=24" Hike=1.5" Lip=0.375" X--fall=0.02 ' / ' Parkway 21 ' wide @ 0.021 /' (net width from CF=20. 831 ) n(road) =. 015 n(parkway)=. 025 Req'd dry lane width from C/L=21' Flow designated to start on 1 side Pipe: Velocity headloss coefficient=1.2 n=0.013 Allowable pipe size range: 18" to 96" ------- - ------ ------- Street Hydraulics Results - -----------------------_---- Street capacity to T.C. 1 side = 26. 6 cfs. Street capacity to dry lane one side = 14. 9 cfs Street only: Incoming portion of split flow to street at upper node=14 .0 cfs At end of reach: Q=14 . 82 cfs D=. 55' Flow area=5 . 00 sf V=2 .97 fps D*V=1 . 65 Flooded width one side=22 . 08 ' Sf=.00668 Flow is clear of req'd dry lane by . 06' Flow cross-section, 4 : 1 vertical exageration: Scale is reduced when R/W > 120 ' --------------------------- pipe Hydraulics Results --------------------_--_------ Pipe only: Incoming portion of split flow to pipe at upper node=11.7 cfs 1 21" pipe (d=1 .75' ) Q=11. 66 cfs D=1.52 ' D/d=. 868 Sf=.00495 Losses : Entrance+minor=1.2V2/2g=0.52 ' Friction=1 .49' Total=2 .00 ' X-Sect A=2 .22 sf V=5.26 fps Tt=0 . 95 min. --------------------------------- Hydrology Results --------•-----_-------------------- Combined street and pipe. 13.7 ac Tc= 9 .44 + . 95 = 10.39 min. I=2 .274"/hr Q(subarea)=. 85 cfs Subarea Fp=1 .261"/hr C=. 850 Q(tot) =26.51 cfs ----------------------------------- Stream 5 Summary --------------------------_----- At node 128 L=1900' Fp=1.339"/hr Ai=0.705 q=1 . 93 cfs/ac A = 13.741 acres Tc = 10.39 minutes Q = 26.51 cfs This stream is to confluence with 1 other per record 25 Record 29 Confluencing 2 streams at node 128 [at Mission Trail & Elberta Rd] Stream: 4 5 Tc: 14 . 84 10.39 I : 1. 916 2 .274 Qpeak: 114. 14* 26.51 x Ratio: I4/15 = Qadj : 114 . 14 + 22 .34 = 136. 48 Confluenced Q = 136.48 cfs at Tc = 14 . 84 minutes from 86.44 acres Longest stream = 4980 ' from node 121 Confluenced streams become stream #4 ----- --------------------------- Stream 4 Summary ------------------------------------ At node 128 L=4980' Fp=0.833"/hr Ai=0. 432 q=1.58 cfs/ac A = 86.441 acres Tc = 14.84 minutes Q = 136.5 cfs Record 30 Node 128 to 129 Pipe flow, program sized Stream #4 [Line B in Elberta Rd extention westerly from city limit into Lake Elsinore] Elevation 1282 . 00 to 1264 . 00 delta H=18 .0' Length=270' Slope=.06667 Subarea: 0 acre Pipe: Velocity headloss coefficient=0 .5 n=0.013 Allowable pipe size range: 36" to 96" --------------------------- Pipe Hydraulics Results ---------------------------- 1 36" pipe (d=3.00 ' ) Q=136.48 cfs D=2 .25' D/d=.751 Sf=.05019 Losses: Entrance+minor=0.5V2/2g=4. 47 ' Friction=13.55' Total=18 .02 ' X-Sect A=5. 69 sf V=23.97 fps Tt=0.19 min. ------------------------------- Hydrology Results ------------------------------ Tc= 14 .84 + .19 = 15. 03 min. I=1. 905"/hr Q(subarea)=.00 cfs Q(tot)=136.48 cfs ------------------------------- Stream 4 Summary ------------------------------- At node 129 L=5250 ' Fp=0.833"/hr Ai=0. 432 q=1.58 cfs/ac A = 86.441 acres Tc = 15.03 minutes Q = 136.5 cfs New Stream Record 31 Node 131 to 132 Initial subarea Stream #6 Subarea #25 [S1V1] Elevation 1983.00 to 1800.00 delta H=183.0' Length=630 ' Slope=.29048 Subarea: 1. 4 acres Soil: D Land use: Natural-Poor RI (AMC2)=88 Ai=. 00 Ap=1 . 00 ------------------- ------------- Hydrology Results ------------------------------ k=.530 Tc= 8 . 94 min. I=2 .44411/hr Q(subarea)=2 . 87 cfs Subarea Fp=.169"/hr C=.838 Q(tot)=2 .87 cfs ------------------------------- Stream 6 Summary -- - ---------------------- ---- At node 132 L=630 ' Fp=0.169"/hr Ai=O q=2.05 cfs/ac A = 1.40 acres Tc = 8.94 minutes Q = 2.87 cfs Record 32 Node 132 to 133 Natural mountain channel Subarea Q enters stream uniformly distributed along reach. Stream #6 Subarea #26 [S1V2] Elevation 1800.00 to 1500 .00 delta H=300. 0' Length=710 ' Slope=.42254 Map slope adjusted to .2165 effective slope per RCFCD Hyd Man Plate D-6.2 Subarea: 3 acres Soil: D Land use: Natural-Poor RI (AMC2)=88 Ai=. 00 Ap=1 . 00 ------------------------------ Hydraulics Results ------------------------------ V avg = 4 . 55 fps for avg Q of 5.56 cfs. Tt = 2 .60 min. ------------------------------- Hydrology Results ------------------------------ Tc= 8 .94 + 2 . 60 = 11.54 min. I=2 .162"/hr Q(subarea) =5.38 cfs Subarea Fp=.168"/hr C=.830 Q (tot) =8 .25 cfs ------------------------------- Stream 6 Summary ------------------------------- At node 133 L=1340' Fp=0. 168"/hr Ai=O q=1 .88 cfs/ac A = 4.40 acres Tc = 11.54 minutes Q = 8.25 cfs Record 33 Node 133 to 134 Natural valley channel Subarea Q enters stream uniformly distributed along reach. Stream #6 Subarea #27 [S1W to proposed extension of exist culvert under freeway] Elevation 1500.00 to 1415. 00 delta H=85.0 ' Length=730' Slope=.11644 Subarea: 13 .9 acres Area portions, soil & land use: 3 acres soil A, Natural-Poor RI (AMC2)=62, Ap=1 10. 9 acres soil D, Natural-Poor RI (AMC2)=88, Ap=1 Averages: RI=82 Ai=O Ai=O ------------y---------=------- Hydraulics Results -------------------------_------- V avg = 10 .16 fps for avg Q of 19.54 cfs. Tt = 1.20 min. ------------------------------- Hydrology Results --------------- -------------- Tc= 11 .54 + 1.20 = 12 .74 min. I=2 . 06211/hr Q(subarea)=22 .57 cfs Subarea Fp=.257"/hr C=.788 Q(tot)=30.82 cfs ------------------------------------- Stream 6 Summary ------------- ---------- ------- At node 134 L=2070 ' Fp=0.23611/hr Ai=O q=1. 68 cfs/ac A = 18.30 acres To = 12.74 minutes Q = 30.82 cfs Record 34 Node 134 to 161 Pipe flow, specified size & number Stream #6 [exist 36" culvert and proposed extension to Sylvester Rd] Elevation 1415.00 to 1368 .00 delta H=47 .0' Length=520 ' Slope=.09038 Subarea: 0 acre Pipe: Velocity headloss coefficient=1.2 n=0.024 1 36" pipe (d=3.00 ' ) Q=30 . 82 cfs -------------.-------=------ Pipe Hydraulics Results ------------------------------ D=1. 11' D/d=.371 Sf=.08464 Losses: Entrance+minor=1.2V2/2g=3 . 11' Friction=44 .01' Total=47 . 12 ' X-Sect A=2 .39 sf V=12. 92 fps Tt=0 . 67 min. --------------------------------- Hydrology Results ---- --------------------------___ Tc= 12 .74 + . 67 = 13. 41 min. I=2 . 012"/hr Q(subarea)=. 00 cfs Q(tot)=30.82 cfs --------------------------------- Stream 6 Summary -------------------_------------ At node 161 L=2590' Fp=0.236"/hr Ai=O q=1 . 68 cfs/ac A = 18.30 acres To = 13.41 minutes Q = 30.82 cfs This stream is to confluence with 1 other per record 43 New Stream Record 35 Node 141 to 142 Initial subarea Stream #7 Subarea #28 [S1S] Elevation 1930 .00 to 1544 .00 delta H=386.0 ' Length=1000 ' Slope=.3860 Subarea: 5.7 acres Soil: D Land use: Natural-Poor RI (AMC2) =88 Ai=. 00 Ap=1. 00 ------------------------------- Hydrology Results --------------------------------- k=.530 Tc= 10.16 min. I=2 .298"/hr Q(subarea)=10. 93 cfs Subarea Fp=.168"/hr C=.834 Q(tot)=10 . 93 cfs ------------------------------- Stream 7 Summary ---------------------------------- At node 142 L=1000 ' Fp=0.168"/hr Ai=O q=1. 92 cfs/ac A = 5.70 acres To = 10.16 minutes Q = 10.93 cfs Record 36 Node 142 to 143 Natural valley channel Subarea Q enters stream uniformly distributed along reach. Stream #7 Subarea #29 [S1T to Hemple St. Land use: RM & EDR modeled as all natural-fair] Elevation 1544.00 to 1456. 00 delta H=88. 0 ' Length=680 ' Slope=. 12941 Subarea: 17 . 4 acres Soil: D Land use : Natural-Fair RI (AMC2) =83 Ai=.00 Ap=1.00 ------------------------------ Hydraulics Results --------------____-.----- --_--- V avg = 11 . 61 fps for avg Q of 26.24 cfs. Tt = .98 min. -----------=--------------------- Hydrology Results --------------------------------- Tc= 10.16 + . 98 = 11. 14 min. I=2 .199"/hr Q(subarea) =30. 64 cfs Subarea Fp=.24311/hr C=.601 Q(tot) =41.56 cfs --------------------------------- Stream 7 Summary ---------------------------- At node 143 L=1680' Fp=0 .225"/hr Ai=O q=1. 80 cfs/ac A = 23.10 acres Tc = 11.14 minutes Q = 41.56 cfs Record 37 Node 143 to 144 Natural valley channel Subarea Q enters stream uniformly distributed along reach. Stream #7 Subarea #30 [S1U to exist culvert under freeway] Elevation 1456. 00 to 1402 . 00 delta H=54.0 ' Length=600' Slope=.0900 Subarea: 11 acres Area portions, soil & land use: 5 acres soil A, Natural--Fair RI (AMC2) =46, Ap=1 6 acres soil D, Natural-Fair RI (AMC2) =83, Ap=1 Averages: RI=66 Ai=0 Ai=O --------------------------- ---- Hydraulics Results ------------------------------ V avg = 11 .57 fps for avg Q of 49.38 cfs . Tt = . 86 min. ---------------------------------- Hydrology Results ------------------------_----- Tc= 11.14 + . 86 = 12 .00 min. I=2 . 122"/hr Q(subarea) =15. 65 cfs Subarea Fp=.541"/hr C=. 670 Q(tot)=57 .21 cfs ----------=----------------W--- Stream 7 Summary ---------------------------_---. At node 144 L=2280' Fp=0.327"/hr Ai=O q=1. 68 cfs/ac A = 34.10 acres Tc = 12 .00 minutes Q = 57.21 cfs Record 38 Node 144 to 1.54 Pipe flow, specified size & number Stream #7 [freeway. exist culvert to proposed junction] Elevation 1402 .00 to 1372 . 00 delta H=30. 0 ' Length=430' Slope=.06977 Subarea: 0 acre Pipe: Velocity headloss coefficient=1 .2 n=0.024 1 36" pipe (d=3.001 ) Q=57 .21 cfs ---------------------------- Pipe Hydraulics Results ------------------------------ D=1.74' D/d=. 579 Sf=.06193 Losses: Entrance+minor=1.2V2/2g-3. 39 ' Friction=26. 63' ToLal=30.02' X-Sect A=4 .25 sf V=13.48 fps Tt=0 .53 min. ------------------------------------ Hydrology Results -------- --------------------- Tc= 12 . 00 + . 53 = 12 .53 min. I=2 .078"/hr Q(subarea)=. 00 cfs Q(tot) =57.21 cfs ---------------------------------- Stream 7 Summary -----_------------------------- At node 154 L=2710 ' Fp=0.327"/hr Ai=O q=1.68 cfs/ac A = 34.10 acres Tc = 12.53 minutes Q = 57.21 cfs This stream is to confluence with 1 other per record 41 New Stream Record 39 Node 151 to 152 Initial subarea .qt-raam 4 R R>>ha raa All [S1X1 outside city limit in exist development] Elevation 1710.00 to 1570.00 delta H=140. 0 ' Length=560' Slope=.2500 Subarea: 2 . 9 acres Soil: D Land use: 'i-acre lots (LDR) Pervious portion RI (AMC2)=75 Ai=.40 Ap=.60 - ------------------------------ Hydrology Results ----------------------------- k=. 421 Tc= 6.98 min. I=2 .752"/hr Q(subarea)=6. 58 cfs Subarea Fp=.383"/hr C=.825 Q(tot)=6.58 cfs --- ------------------------- Stream 8 Summary --------------------- --------- At node 152 L=560' Fp=0.38311/hr Ai=0.4 q=2 .27 cfs/ac A = 2.90 acres To = 6.98 minutes Q = 6.58 cfs Record 40 Node 152 to 153 Natural valley channel Subarea Q enters stream uniformly distributed along reach. Stream #8 Subarea #32 [S1X2 in exist development outside city limit to exist culvert under freeway] Elevation 1570.00 to 1410. 00 delta H=160.0 ' Length=1060 ' Slope=.15094 Subarea: 20 .3 acres Area portions, soil & land use: 16.3 acres soil A, ;i-acre lots (LDR) Pervious portion RI (AMC2)=32, Ap=0 . 6 4 acres soil D, 'i-acre lots (LDR) Pervious portion RI (AMC2)=75, Ap=0 . 6 Averages : RI=40 Ai=0. 4 Ai=0.4 ------------------------------- Hydraulics Results ------------------------------ V avg = 12 . 14 fps for avg Q of 23.27 cfs . Tt = 1 .45 min. ------------------------------- Hydrology Results ------------------------------- Tc= 6. 98 + 1. 45 = 8 .44 min. I=2 .513"/hr Q(subarea)=33.37 cfs Subarea Fp=1. 144"/hr C=. 654 Q(tot) =39. 96 cfs --------------------------- --- Stream 8 Summary ------------------------_--_------ At node 153 L=1620' Fp=1. 04911/hr Ai=0.4 q=1.72 cfs/ac A = 23.20 acres To = 8.44 minutes Q = 39.96 cfs Record 41 Node 153 to 154 Pipe flow, specified size & number Stream #8 [30" then 24" ex. RCP culvert under fwy, then proposed 24" RCP] Elevation 1402.00 to 1372 . 00 delta H=30.0 ' Length=680 ' Slope=.04412 Subarea: 0 acre Pipe: Velocity headloss coefficient=l n=0. 013 1 24" pipe (d=2. 00 ' ) Q=39. 96 cfs -------,--------------------- Pipe Hydraulics Results ---------- D=1.49' D/d=.743 Sf=. 03835 Losses: Entrance+minor=lV2/2g=3 . 96' Friction=26. 08 ' Total=30. 04' X-Sect A=2 . 50 sf V=15. 96 fps Tt=0 .71 min. ------------------------ ----- Hydrology Results ------------------------------ Tc= 8 .44 8 .44 + .71 = 9.15 min. I=2 . 417"/hr Q(subarea)=.00 cfs Q(tot)=39. 96 cfs -----------=----------=-------- Stream 8 Summary ------------------------------- At node 154 L=2300' Fp=1 . 049"/hr Ai=0.4 q=1.72 cfs/ac A = 23.20 acres To = 9.15 minutes Q = 39.96 cfs This stream is to confluence with 1 other per record 38 Record 42 Confluencing 2 streams at node 154 [30" then 24" ex. RCP culvert under fwy, then to proposed 24" RCP] Stream: 7 8 Tc: 12 .53 9. 15 T - ? n7A 9 417 Qpeak: 57 .21* 39. 96 x Ratio: I7/I8 = Qadj : 57 .21 + 34 .35 = 91 . 56 Confluenced Q = 91.56 cfs at Tc = 12.53 minutes from 57 . 30 acres Longest stream = 2710' from node 141 Confluenced streams become stream #7 -- Stream 7 Summary ------------------------------- At node 154 L=2710 ' Fp=0. 619"/hr Ai=0 .162 q=1. 60 cfs/ac A = 57 .30 acres Tc = 12.53 minutes Q = 91.56 cfs Record 43 Node 154 to 161 Pipe flow, program sized Stream #7 [culvert extension along freeway to junction at Sylvester Rd] Elevation 1372.00 to 1368 .00 delta H=4 . 0 ' Length=150 ' Slope=.02667 Subarea: 0 acre Pipe: Velocity headloss coefficient=0 .2 n=0.015 Allowable pipe size range: 18" to 96" ------------------------------ Pipe Hydraulics Results ------------_----------------- 1 36" pipe (d=3 .00' ) Q=91.56 cfs D=2 . 63 ' D/d=.877 Sf=.02265 Losses: Entrance+minor=0 .2V2/2g=0.60 ' Friction=3.40' Total=4 .00' X-Sect A=6.57 sf V=13. 93 fps Tt=0 .18 min. --------------------------------- Hydrology Results _--------------------=-------- Tc= 12.53 + .18 = 12.71 min. I=2.064"/hr Q(5ubarea)=.00 cfs Q(tot)=91.56 cfs ------------------------------ -- Stream 7 Summary -------------- ---------------- At node 161 L=2860 ' Fp=0.619"/hr Ai=0.162 q=1. 60 cfs/ac A = 57 .30 acres Tc = 12.71 minutes Q = 91.56 cfs This stream is to confluence with 1 other per record 34 Record 44 Con£lueneing 2 streams at node 161 [Sylvester Rd at freeway] Stream: 6 7 Tc: 13. 41 12 .71 I: 2. 012 2 .064 Qpeak: 30.82 91 .56* x Ratio: Tc7/Tc6 Qadj : 29.22 + 91.56 120.78 Confluenced Q = 120 .78 cfs at Tc = 12 .71 minutes from 75 . 60 acres Longest stream = 2860' from node 141 Confluenced streams become stream #6 --------------------------- ----- Stream 6 Summary -------------------------------- At node 161 L=2860 ' Fp=0.526"/hr Ai=0.123 q=1. 60 cfs/ac A = 75.60 acres Tc = 12.71 minutes Q = 120.8 cfs Record 45 Node 161 to 162 Pipe flow, program sized Subarea Q enters stream at downstream node . Stream #6 Subarea #33 [SlY in Sylvester Rd to Lakeview Ter/Valley View Av?] Elevation 1368 .00 to 1348 .00 delta H=20 .0 ' Length=330 ' Slope=. 06061 Subarea: 13 .2 acres Area portions, soil & land use: 8.8 acres soil A, Specified Ai 0. 4 Pervious portion RI (AMC2)=32, Ap=0. 6 4.4 acres soil A, 5 - 8 du/acre (MHDR) Pervious portion RI (AMC2)=32, Ap=0 .45 Averages : RI=32 Ai=0.45 Ai=0. 45 Pi na• Val ne-i i-v hAAril naa r nraffi r,i Ant=1 n=n f11 ,4 Allowable pipe size range: 18" to 96" --------------------------- Pipe Hydraulics Results --------- ------------------ 1 36" pipe (d=3.00' ) Q=120.78 cfs D=2 .25' D/d=.750 Sf=. 03939 Losses: Entrance+minor=lV2/2g=7 .01 ' Friction=13.00' Total=20. 01' X-Sect A=5 . 69 sf V=21.23 fps Tt=0 .26 min. ------------------------------- Hydrology Results ------------------------------ Tc= 12.71 + .26 = 12 .97 min. I=2 .04411/hr Q(subarea)=16.52 cfs Subarea Fp=1 . 18711/hr C=. 612 Q(tot)=137.30 cfs ------------------------------- Stream 6 Summary ------------------------------- At node 162 L=3190' Fp=0 . 625"/hr Ai=0 .171 q=1.55 cfs/ac A = 88.80 acres Tc = 12 .97 minutes Q = 137.3 cfs Record 46 Node 162 to 163 Pipe flow, program sized Subarea Q enters stream at downstream node . Stream #6 Subarea #34 [S1Z1 in FCD MDP Sedco Line A: 24" . Sylvester Rd. ] Elevation 1348 .00 to 1286.00 delta H=62. 0' Length=1130' Slope=.05487 Subarea: 9.3 acres Area portions, soil & land use: 8 .5 acres soil A, 14 - 20 du/acre (VHDR) Pervious portion RI (AMC2)=32, Ap=0.2 0. 8 acres soil A, Commercial/Industrial Pervious portion RI (AMC2)=32, Ap=0.1 Averages: RI=32 Ai=0.81 Ai=0.81 Pipe: Velocity headloss coefficient=0.2 n=0.013 Allowable pipe size range: 18" to 96" ---------------------------- Pipe Hydraulics Results ---------------------------- 1 36" pipe (d=3.00' ) Q=137 .3 cfs D=2 .21 ' D/d=.736 Sf=.05323 Losses: Entrance+minor=0.2V2/2g=1.88' Friction=60. 15' Total=62 .03' X-Sect A=5.58 sf V=24. 61 fps Tt=0.77 min. ------------------------------- Hydrology Results ------------------------------ Tc= 12. 97 + . 77 = 13.74 min. I=1. 989"/hr Q(subarea)=14 .77 cfs Subarea Fp=1 . 16811/hr C=.799 Q(tot)=152_.07 cfs ------------------------------- Stream 6 Summary ------------------------------- At node 163 L=4320' Fp=0. 676"/hr Ai=0.232 q=1.55 cfs/ac A = 98.10 acres Tc = 13.74 minutes Q = 152.1 cfs Entire study area = 305.74 acres Average Fp=0.74 Average Ai=0.326 End of RMH run for file C:\Program Files\Microsoft Visual Studio\VB98\RMH 9.41\Wil MDP S1 alt2.RMR edited 10-07-2015 09:52 **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 ************************** DESCRIPTION OF STUDY ************************** * MISSION TRAIL APARTMENTS OFF-SITE HYDROLOGY * 10--YEAR INTERIM CONDITION * BY KAM 051418 FILE NAME: MTOSIO.DAT TIME/DATE OF STUDY: 08:43 05/14/2018 ----------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.320 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.980 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.540 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 SLOPE OF 10--YEAR INTENSITY-DURATION CURVE = 0.4809628 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4792280 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 I-HOUR INTENSITY(INCH/HOUR) = 0.990 SLOPE OF INTENSITY DURATION CURVE = 0.4810 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* From Wildmar Drainage S-1 Hydrology At node 163, Q10=152.1 cfs Tc=13.4 min Atot=98.1 AC Max Capacity of existing Lat "B-8" = 20 CFS Bypass Flow = 152.1 cfs -- 20 cfs= 132.1 cfs I **************************************************************************** FLOW PROCESS FROM NODE 163.00 TO NODE 163.00 IS CODE = 7 ---------------------------------------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 13.40 RAIN INTENSITY(INCH/HOUR) = 2.04 TOTAL AREA(ACRES) 98.10 TOTAL RUNOFF(CFS) = 132.10 **************************************************************************** FLOW PROCESS FROM NODE 163.00 TO NODE 112.00 IS CODE = 61 ----------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< UPSTREAM ELEVATION(FEET) = 1280.90 DOWNSTREAM ELEVATION(FEET) = 1279.80 STREET LENGTH(FEET) = 326.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 132.66 ***STREET FLOW SPLITS OVER STREET-CROWN*** FULL DEPTH(FEET) 1.16 FLOOD WIDTH(FEET) = 74.58 FULL HALF-STREET VELOCITY(FEET/SEC.) = 3.24 SPLIT DEPTH(FEET) = 0.82 SPLIT FLOOD WIDTH(FEET) = 41.09 SPLIT FLOW(CFS) = 31.52 SPLIT VELOCITY(FEET/SEC.) = 2.66 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.16 HALFSTREET FLOOD WIDTH(FEET) = 74.58 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.24 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.75 STREET FLOW TRAVEL TIME(MIN.) = 1.68 Tc(MIN.) = 15.08 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.923 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8683 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 0.67 SUBAREA RUNOFF(CFS) = 1.12 TOTAL AREA(ACRES) = 98.8 PEAK FLOW RATE(CFS) = 133.22 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 1.16 HALFSTREET FLOOD WIDTH(FEET) = 74.58 FLOW VELOCITY(FEET/SEC.) = 3.24 DEPTH*VELOCITY(FT*FT/SEC.) = 3.75 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 112.00 = 326.00 FEET. Max Capacity of existing Lat 11B-7" = 16.0 CFS Bypass Flow = 133.2 cfs - 16.0 cfs = 117.2 cfs **************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 7 ------------------------------------------------------------------------------ »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 15.10 RAIN INTENSITY(INCH/HOUR) = 1.92 TOTAL AREA(ACRES) = 98.80 TOTAL RUNOFF(CFS) = 117.20 2 **************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 61 ----------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< UPSTREAM ELEVATION(FEET) = 1279.80 DOWNSTREAM ELEVATION(FEET) = 1277.50 STREET LENGTH(FEET) = 321.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 117.57 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.08 HALFSTREET FLOOD WIDTH(FEET) = 67.11 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.53 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 4.91 STREET FLOW TRAVEL TIME(MIN.) = 1.18 Tc(MIN.) = 16.28 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.854 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8675 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) _ .0.74 TOTAL AREA(ACRES) = 99.3 PEAK FLOW RATE(CFS) = 117.94 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 1.09 HALFSTREET FLOOD WIDTH(FEET) = 67.28 FLOW VELOCITY(FEET/SEC.) = 4.53 DEPTH*VELOCITY(FT*FT/SEC.) 4.91 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 113.00 = 647.00 FEET. Max Capacity of existing Lat "B-6" = 16.1 CFS Bypass Flow = 117.9 cfs - 16.1 cfs = 101.8 cfs FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 7 ---------------------------------------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 16.20 RAIN INTENSITY(INCH/HOUR) = 1.86 TOTAL AREA(ACRES) = 99.30 TOTAL RUNOFF(CFS) = 101.80 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 1 -----------------------------------------------------------------------_--------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.20 RAINFALL INTENSITY(INCH/HR) = 1.86 TOTAL STREAM AREA(ACRES) = 99.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 101.80 3 From Wildmar Drainage S-1 Hydrology At node 128, Q10=136.5 cfs Tc=14.1 min Atot=86.4 AC FLOW PROCESS FROM NODE 128.00 TO NODE 113.00 IS CODE = 7 -------------------------------------------------------------------------_---- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< --------- ----- ------------------------------___ ______----------------- ----------------------------------------------------------------------------- USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 14.10 RAIN INTENSITY(INCH/HOUR) = 1.99 TOTAL AREA(ACRES) = 86.40 TOTAL RUNOFF(CFS) = 136.50 **************************************************************************** FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.10 RAINFALL INTENSITY(INCH/HR) = 1.99 TOTAL STREAM AREA(ACRES) = 86.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 136.50 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 101.80 16.20 1.858 99.30 2 136.50 14.10 1.986 86.40 *********************************WARNING********************************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 225.10 14.10 1.986 2 229.48 16.20 1.858 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 225.10 Tc(MIN.) = 14.10 TOTAL AREA(ACRES) = 185.7 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 113.00 = 647.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 114.00 TO NODE 115.00 IS CODE = 61 ------------------------------------------------------------------------------ »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< UPSTREAM ELEVATION(FEET) = 1277.50 DOWNSTREAM ELEVATION(FEET) = 1271.50 STREET LENGTH(FEET) = 544.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 4 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 227.08 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.01 HALFSTREET FLOOD WIDTH(FEET) = 59.55 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.37 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 5.41 STREET FLOW TRAVEL TIME(MIN.) = 1.69 Tc(MIN.) = 15.79 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.881 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7390 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 2.84 SUBAREA RUNOFF(CFS) = 3.95 TOTAL AREA(ACRES) = 188.5 PEAK FLOW RATE(CFS) = 229.05 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 1.01 HALFSTREET FLOOD WIDTH(FEET) = 59.72 FLOW VELOCITY(FEET/SEC.) = 5.39 DEPTH*VELOCITY(FT*FT/SEC.) = 5.44 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 115.00 = 1191.00 FEET. ** RESULTS OF IRREGULAR CHANNEL ANALYSIS ** CALCULATIONS BASED ON MANNINGS EQUATION WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS (c) Copyright 1983-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679--0090 ************************** DESCRIPTION OF STUDY ************************** * COMBINED FLOW AT SECTION A-A. (10-YEAR) * BASED ON SURVEY SHOTS OF EX STREET AT STA 58+70 MISSION TRAIL * BY KAM 051818 ************************************************************************** TIME/DATE OF STUDY: 08:55 05/14/2018 ---------------------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1.84 2 2.00 0.76 3 32.00 0.63 4 32.10 0.00 5 34.00 0.18 6 82.00 0.96 SUBCHANNEL SLOPE(FEET/FEET) = 0.015000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SUBCHANNEL FLOW(CFS) = 157.5 Loos, 5(VQ SUBCHANNEL FLOW AREA(SQUAR EE - 26.83 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 5.871 SUBCHANNEL FROUDE NUMBER = 1.777 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 79.10 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.34 ---------------------------------------------------------------------------- ----------------------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 2 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 82.00 0.96 2 107.00 0.44 3 110.00 0.11 4 120.00 0.74 5 132.00 1.74 SUBCHANNEL SLOPE(FEET/FEET) = 0.015000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 SUBCHANNEL FLOW(CFS) - 79.0PjT rj{�1� . . . . . . . . . . . . . . . . . . . . . . SUBCHANNEL FLOW AREA(SQUARE FEET) = 13.39 SUBCHANNEL FLOW VELOCITY(FEET/SEC. ) = 5.901 6 SUBCHANNEL FROUDE NUMBER = 1.784 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 39.44 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.34 ---------_----------_------------------------------------------------------------ ---------------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED 229.10 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 236.57 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATE"RFACE ELEVATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.94 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. --------------------------- -------------------------------------------------- 7 Worksheet for Combination Inlet On Grade - 1 o ec es Solve For Efficiency Discharge 157.50 fills P9-0�ow p Cpt'TjO I#J(VY Slope 0.01280 ft/ft _r -c- Gutter Width 2.00 ft C S?AT+ES� � f01� Gutter Cross Slope 0.08 ft/ft Road Cross Slope 0.02 ft/ftlf-� 7.� F7 Roughness Coefficient 0.015 6y as ' Local Depression 4.00 in Local Depression Width 4.00 ft Grate Width 2.00 ft Grate Length 23.64 ft Grate Type P-50 mm(P-1-7/8") Clogging 20.00 Curb Opening Length 23.64 ft y �,�ry't�t 1 tr "t�"�'�p� �. '''x'� >,• _ �i w"T��yn��'4,�n�1 =rJi���-��t10 S-' T a,!%a...:'�.�.'?4c�haa??Ji.�'..5��?�- Calculation Option Use Both Grate Flow Option Exclude None Rey. 7 - .. y r+ its ���k � S d Tc �{`., + 1P' r_ �.,< a s �tSy� `"]R § 'Ff� + irVTi § iL�l �pv }F bD 5 } t:_Sd4r fin. ;`. 4ij �i ; r t n <t* rc( s : ix3fixl3§a959Yr,74:bsvS.=�, S.},�i2S��J -�..S.�K.l� .iiu.T.3�w.y1_ Efficiency 79.12 Intercepted Flow 124.61 ft'/s Bypass Flow 32.89 ft3/s Spread 44.57 ft Depth 1,01 ft Flow Area 19.98 ftz Gutter Depression 0.12 ft Total Depression 0.45 ft Velocity 7.88 ft/s Splash Over Velocity 222.32 ft/s Frontal Flow Factor 1.00 Side Flow Factor 0.74 Grate Flow Ratio 0.13 Equivalent Cross Slope 0,03441 ft/ft Active Grate Length 18.91 ft Length Factor 0.04 Total Interception Length 127.49 ft Bentley Systems,Inc. Haestad Methods Sol dtimt10pfitevrMaster V81(SELECTseries 1) [08.11.01.03] 4114/201811.12:16 AM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203.755.1666 Page 1 of 2 See above Proposed Flow-by Combination Inlet Q(intercepted)=124.6 cfs Q (bypass) = 32.9 cfs (west side)+79.0 cfs (east side)=106.9 cfs FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 7 ---------------------------------------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ---------------- USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 15.60 RAIN INTENSITY(INCH/HOUR) = 1.89 TOTAL AREA(ACRES) = 188.50 TOTAL RUNOFF(CFS) = 106.90 FLOW PROCESS FROM NODE 115.00 TO NODE 116.00 IS CODE = 61 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< UPSTREAM ELEVATION(FEET) = 1271.50 DOWNSTREAM ELEVATION(FEET) = 1269.30 STREET LENGTH(FEET) = 284.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 111.92 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.86 HALFSTREET FLOOD WIDTH(FEET) = 44.96 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.14 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.57 STREET FLOW TRAVEL TIME(MIN.) = 1.14 Tc(MIN.) = 16.74 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.829 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7361 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 7.46 SUBAREA RUNOFF(CFS) = 10.04 TOTAL AREA(ACRES) = 196.0 PEAK FLOW RATE(CFS) = 116.94 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.87 HALFSTREET FLOOD WIDTH(FEET) = 46.19 FLOW VELOCITY(FEET/SEC.) = 4.15 DEPTH*VELOCITY(FT*FT/SEC.) = 3.63 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 116.00 = 1475.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 196.0 TC(MIN.) = 16.74 PEAK FLOW RATE(CFS) = 116.94 ------------------- END OF RATIONAL METHOD ANALYSIS g **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 ************************** DESCRIPTION OF STUDY ************************* * MISSION TRAIL APARTMENTS OFF-SITE HYDROLOGY * 100-YEAR FLOW * BY KAM 030118 FILE NAME: MTOS100.DAT TIME/DATE OF STUDY: 08:24 03/05/2018 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.320 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.980 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.540 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4809628 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE 0.4792280 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.500 SLOPE OF INTENSITY DURATION CURVE = 0.4792 RCFC&WCD HYDROLOGY MANUAL "C"--VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* 1 RMH RC ver. 9.42 for Windows August 2015 RATIONAL METHOD HYDROLOGY Riverside County (C) 1992-2015 Jack P. Norris, P.E., Tel (951) 285-5007 JackNorris@verizon.net SIN 1 Jack P. Norris, RCE, 40019 Via Graziana, Murrieta CA 92562 File Program Files\Microsoft Visual Studio\VB98\RMH 9. 41\Wil MDP S1 alt2.RMR By Jack N. Work code Hydrology Job# 32236 46 records . Edited 06-19-2015 10:09 Run 10-07-2015 --=---------=-------------------- Description ---------------------------------- Wildomar MDP subregion S1 -------------------------------------------------------------------------------- Frequency: 100-yr I=10 .705Tc-.48 Antecedent Moisture Condition (AMC)=2 Region from Plate D-4.1: Elsinore-Wildomar 100-yr 10-min I=3 .54 (input) , 100-yr 60-min I=1.5 (input) -Loglog slope of I-D curve=. 48 (input) Initial area Tc by Kirpich formula: Tc = k(L3/H) •2 RI for urban covers assumes good residential/commercial landscaping. RI for undeveloped land is the average of natural cover RIs for entered soil & cover quality, from Plate D-5.5 (1) . Schematic diagram. Fields: Node number Record number + process name Streams: 1 2 3 4 5 6 7 8 101 181 108 121 171 131 141 151 1 Init 4 Init 12Init 19Init 26Init 31lnit 35Init 39Init 102 182 109 122 172 132 142 152 2 NVC 5 Pipe 13 St 20 NMC 27 St 32 NMC 36 NVC 40 NVC 103 183 110 123 173 133 143 153 3 Pipe 6 Chan 14 S+P 21 NVC 28 S+P 33 NVC 37 NVC 41Pipe 104 <---- ill 124 1 134 144 1 8 Chan 16 S+P 22Pipe I 34Pipe 38Pipe 1 104 .5 112 125 1 1 154 <----' 9 Pipe 17Pipe 23Chan I I 43Pipe 105 113 126 1 161 <----' 1OPipe 18Pipe 24Pipe I 45Pipe 106 248 127 1 162 llPipe 25Pipe I 46Pipe 107 128 <----' 163 30Pipe 129 rd 1 Node 101 to 102 Initial subarea �R9 Strea 1 Subarea #1 [S1A at ea corner of subregion] Elevation 1900 . 1588 . 00 delta H=312 . 0 ' Length=1000 ' Slope=. 3120 Subarea: 11.5 acres * Warning: Hydrology Manual reco s against exceeding 10 acres. Soil. D Land use: Natural-Poor RI (AMC2) =88 Ai=. 00 Ap=1 . 00 ------------------------------- Hydrology Results ---------------- ------------ k=.530 Tc= 10 . 60 min. I=3. 447"/hr Q(subarea)=33.88 cfs Subarea Fp=. 173"/hr C=. 855 Q(tot) =33.88 cfs Ap=.20 i=.80 Pip Velocity headloss coefficient=0 .2 n=0 . 013 All able pipe size range: 18" to 9611 --------- -------------------- Pipe Hydraulics Results ----------------- -__--_�-- 1 27" pipe =2 .251 ) Q=60 .7 cfs D=1. 59' D/d=.705 Sf=.05377 posses : Entran e+minor=0.2V2/2g=1.28 ' Friction=17 .74 ' Total=19 2 ' X-Sect A=3 . 00 s V=20.26 fps Tt=0 .27 min. -- -----=--------- ------------- Hydrology Results --------_- -------------------- Tc= 12 .21 + .27 = 48 min. I=3 . 187"/hr Q (subarea) =10 9 cfs Subarea Fp=1. 500"/hr =. 815 Q(tot)=71. 09 cfs ------------------------ ---�-- Stream 3 Summary -- ------------_--------------- At node 113 L=2065' Fp=1. 33"/hr Ai=0. 629 q=2 4 cfs/ac A = 26.90 acres Tc = 12.48 'mutes Q = 71AO ofs Record 18 Node 113 to 248 Pi a ow, program sized Stream #3 [to S2 node 248 prop pipe @ Mission rail & Olive St] Elevation 1290 .00 to 1264 . 00 de a H=26.0 ' Length=850' Slope=.03059 Subarea: 0 acre Pipe: Velocity headloss coe icient=0 .2 n=0 . 0 Allowable pipe size rang . 18" to 9611 ------------------------- Pipe Hydraulics Results - ---------------- --------- 1 30" pipe (d=2 . 501 ) =71 . 09 cfs D=2 . 07 ' D/d=. 826 S .02963 Losses : Entrance+m' or=0 .2V2/2g=0. 84 ' Friction=25.19 ' To =26.02 ' X-Sect A=4 .34 s V=16.39 fps Tt=0. 86 min. - ----------- ---------------- Hydrology Results ------------- -------------- Tc= 12 .48 + .86 = 13 .35 min. 1=3 . 08611/hr Q (subarea) =. 00 cfs Q (tot)= . 09 cfs------------- Stream 3 Summary ------------------------ --------- �t no e 248 L=2915 ' Fp=1.333"/hr Ai=0. 629 q=2 . 64 cfs/ac A - 6.90 acres Tc = 13.35 minutes Q = 71.09 cfs ------ _____________ -------------- New Stream Record 19 Node 121 to 122 Initial subarea Stream #4 Subarea #15 (S1M] Elevation 1942 .00 to 1680. 00 delta H=262 .0' Length=700 ' Slope=. 37429 Subarea: 5 . 6 acres Soil: D Land use: Natural-Poor RI (AMC2) =88 Ai=. 00 Ap=1 . 00 --------------------------------- Hydrology Results --------------------- -------- k=.530 Tc= 8 . 86 min. I=3 .75611/hr Q(subarea) =18 . 06 cfs Subarea Fp=. 173"/hr C=.858 Q(tot)=18 . 06 cfs -------------------------------- Stream 4 Summary -------------------------------- At node 122 L=700 ' Fp=0 . 173"/hr Ai=O q=3 .22 cfs/ac A = 5.60 acres Tc = 8.86 minutes Q = 18.06 cfs Record 20 Node 122 to 123 Natural mountain channel Subarea Q enters stream uniformly distributed along reach. Stream #4 Subarea #16 ,'[S1N] Elevation 1680.00 to 1560 .00 delta H=120 . 0 ' Length=770 ' Slope=. 15584 Map slope adjusted to . 1382 effective slope per RCFCD Hyd Man Plate D-6.2 Subarea: 12.2 acres Soil: D Land use : Natural-Poor RT (AMC:2 ) =88 Ai=.00 Ap=1 . 00 ----------------------------------- Hydraulics Results ----_------------------------_ V avg = 6 .75 fps for avg Q of 35. 89 cfs . Tt = 1.90 min. ------------------ ----------------- Hydrology Results --------------------------- _ Tc= 8 .86 + 1. 90 = 10 .77 min. I=3. 421"/hr Q(subarea)=35 . 67 cfs subarea Fp=.173"/hr C=.855 Q(tot) =53 . 73 cfs ----------------- ------ Stream 4 Summary ---------------------------------- At node 123 L=1470' Fp=0 .17311/hr Ai=O q=3 . 02 cfs/ac A = 17. 80 acres To = 10 .77 minutes Q = 53.73 cfs Record 21 Node 123 to 124 Natural valley channel Subarea Q enters stream uniformly distributed along reach. Stream #4 Subarea #17 [S10 to exist culvert under freeway] Elevation 1560 . 00 to 1430 . 00 delta H=130 .0" Length=1440 ' Slope=. 09028 Subarea: 14.5 acres Area portions, soil & land use: 3.9 acres soil A, Natural-Poor RI (AMC2)=62, Ap=1 10. 6 acres soil D, Natural--Poor RI (AMC2)=88, Ap=1 Averages : RI=81 Ai=O Ai=O ------------------------------ Hydraulics Results ------------------------------- V avg = 12 . 96 fps for avg Q of 72 . 45 cfs. Tt = 1 .85 min. ------------------------------- Hydrology Results --_----------=--------_-------- Tc= 10 . 77 + 1. 85 = 12 . 62 min. I=3 . 170"/hr Q(subarea)=37 . 45 cfs Subarea Fp=.300"/hr C=. 815 Q(tot) =91 . 18 cfs ----------------- -------------- Stream 4 Summary -------------------------------- At node 124 L=2910' Fp=0 . 23"/hr Ai=O q=2 . 82 cfs/ac A = 32 . 30 acres To = 12 . 62 minutes Q = 91. 18 cfs _._Record 22 Node 124 to 125 Pipe flow, specified size & number Subarea Q enters stream at downstream node. Stream #4 Subarea #18 (S1P freeway, in existing culvert] Elevation 1430 . 00 to 1390 . 00 delta H=40. 0' Length=390 ' Slope=.10256 Subarea: 4 . 7 acres Soil : A Land use : Specified Ai Pervious portion RI (AMC2)=32 Ai=. 4 0 Ap=. 6 0 Pipe: Velocity headloss coefficient=1 .2 n=0 . 024 1 42" pipe (d=3.50 ' ) Q=91 . 18 cfs ------------------------ ----- Pipe Hydraulics Results ----------------------------- D=1.88 ' D/d=.537 Sf=.08830 Losses : Entrance+minor=1.2V2/2g=5 . 60 " Friction=34 . 44 " Total=40.04 ' X-Sect A=5 .26 sf V=17 .33 fps Tt=0 .38 min. ---------------- -------------- Hydrology Results --------------------------------- Tc= 12 . 62 + . 38 = 12 . 99 min. I=3. 126"/hr Q(subarea)=9. 45 cfs Subarea Fp=1. 486"/hr C=. 643 Q(tot) =100 . 63 cfs ---------------------------------- Stream 4 Summary --------- ---------------------- At node 125 L=3300 ' Fp=0 . 39"/hr Ai=0.051 q=2 .72 cfs/ac A = 37 .00 acres To = 12 . 99 minutes Q = 100.6 cfs Record 23 Node 125 to 126 Prismoidal channel with side inflow Subarea Q enters stream uniformly distributed along reach. Stream #4 Subarea #19 [S1Q thru pvt prop to Lakeview Ter. Elberta Rd is too high to route flow thru. ] FlPvat-inn 1400 . 00 to 1348 .00 delta H=52 . 0 ' Length=650 ' Slope=. 0800 Soil: A Land use : 5 - 8 du/acre (MHDR) Pervious portion RI (AMC2)=32 Ai=. 55 Ap=. 45 Channel: Max d=3 ' Bottom width=0' Sideslope Z=1.5:1 (h:v) n=0 . 014 -------------------------------- Hydraulics Results -------------------------------- Q(avg)=112 . 72 cfs A(avg) =4 . 4 sf V(avg)=25 . 44 fps Tt=.43 min. At end of reach: Q=124 .8 cfs D=1.76' A=4 . 6 sf V=26. 97 fps Sf=.0800 ------------------------------- Hydrology Results =-----=----------- -_-------_- Tc= 12 . 99 + .43 = 13 .37 min. I=3. 084"/hr Q (subarea) =24 .17 cfs Subarea Fp=1. 477"/hr C=.706 Q(tot) =124 .80 cfs --------------------------------- Stream 4 Summary --------------------------�_-_�- At node 126 L=3950 ' Fp=0. 641"/hr Ai=0 . 166 q=2 . 59 cfs/ac A = 48.10 acres Tc = 13.37 minutes Q = 124.8 cfs Record 24 Node 126 to 127 Pipe flow, program sized Subarea Q enters stream at downstream node. Stream #4 Subarea #20 [S1R in prop FCD MDP Line B: 24" . ] Elevation 1348 . 00 to 1312 . 00 delta H=36.0' Length=530 ' Slope=.06792 Subarea: 8 . 4 acres Soil: A Land use: 14 - 20 du/acre (VHDR) Pervious portion RI (AMC2)=32 Ai=.80 Ap=.20 Pipe: Velocity headloss coefficient=1 .2 n=0 . 013 Allowable pipe size range: 18" to 9611 --------------------------- Pipe Hydraulics Results --------------------- - ----- 1 33" pipe (d=2 . 75 ' ) Q=124 .8 cfs D=2 . 42 ' D/d=. 881 Sf=.05007 Losses : Entrance+minor=1.2V2/2g=9 .47 ' Friction=26 . 54 ' Total=36. 01 ' X-Sect A=5 .54 sf V=22 .53 fps Tt=0 .39 min. --------------------------------- Hydrology Results -------------------------- --- Tc= 13. 37 + .39 = 13 .76 min. I=3. 041"/hr Q (subarea)=20 .77 cfs Subarea Fp=1.467"/hr C=.813 Q(tot)=145 .57 cfs --------------------------------= Stream 4 Summary - ---------_----------------------- At node 127 L=4480 ' Fp=0 .76311/hr Ai=0 .26 q=2 . 58 cfs/ac A = 56.50 acres To = 13.76 minutes Q = 145.6 cfs Record 25 Node 127 to 128 Pipe flow, program sized Subarea Q enters stream at downstream node. Stream #4 Subarea #21 (S1Z4 trib from both sides of Elberta Rd to Mission Trail in FCD MDP Line B: 30"] Elevation 1312 . 00 to 1282 . 00 delta H=30 . 0 " Length=500' Slope=.0600 Subarea: 16.2 acres Soil: A Land use: 14 - 20 du/acre (VHDR) Pervious portion RI (AMC2)=32 Ai=.80 Ap=.20 Pipe: velocity headloss coefficient=0.2 n=0 .013 Allowable pipe size range: 181" to 96" ------------------------------- Pipe Hydraulics Results --------------------------- 1 361" pipe (d=3 .00' ) Q=145 . 57 cfs D=2 .27 ' D/d=.757 Sf=.05602 Losses : Entrance+minor=0 .2V2/2g=2 .00 " Eriction=28 . 01 ' Total=30 . 01 ' X-Sect A=5 .74 sf V=25 .35 fps Tt=0 .33 min. ---------------------------- --- Hydrology Results --------------------------------- Tc= 13 .76 + .33 = 14 .09 min. I=3. 007"/hr Q(subarea)=39.59 cfs Subarea Fp=1 . 459"/hr C=.813 Q(tot)=185.16 cfs --------------------------------- Stream 4 Summary ------------------------------- At node 128 L=4980 ' Fp=0 . 918"/hr Ai=0. 381 q=2 . 55 cfs/ac A = 72 .70 acres To = 14 .09 minutes Q = 185.2 cfs This stream is to confluence with 1 other per record 28 New Stream Record 26 Node 171 to 172 Initial subarea Stream #5 Subarea #22 [S1Z2 from freeway to Lakeview Ter @ Mariposa Rd] Elevation 1412 .00 to 1352 . 00 delta H=60 .0 ' Length=480 ' Slope=.1250 Subarea: 5 . 9 acres Soil: A Land use : 5 - 8 du/acre (MHDR) Pervious portion RI (AMC2) =32 Ai=.55 Ap=.45 ------------- .------------------ Hydrology Results ------_---------------.--------- k=.383 Tc= 6.86 min. I=4 .248"/hr Q (subarea)=18 . 49 cfs Subarea Fp=1 .70011/hr C=.738 Q(tot)=18 .49 cfs --------==-------------------- Stream 5 Summary ------------------------------- At node 172 L=480 ' Fp=1 .7"/hr Ai-=0.55 q=3. 13 cfs/ac A = 5.90 acres Tc = 6.86 minutes Q = 18.49 cfs Record 27 Node 172 to 173 Street flow Subarea Q enters stream uniformly distributed along reach. Stream #5 Subarea #23 [S1Z3 in Mariposa Rd to Mission Trail. Some of subarea not trib to Mariposa. ] Elevation 1352 . 00 to 1284 .00 delta H=68 . 0' Length=1120' Slope=. 06071 Subarea: 7 . 4 acres Area portions, soil & land use: 6 .2 acres soil A, 14 - 20 du/acre (VHDR) Pervious portion RI (AMC2) =32, Ap=0. 2 1 .2 acres soil A, Commercial/Industrial Pervious portion RI (AMC2) =32, Ap=0. 1 Averages: RI=32 Ai=0. 82 Ai=0.82 Street: Template 1 Riv Co Local (Std 105-2) Half-width (C/L to flowline)=20' CF=6" Batter=0.25 h/v Gutter width=24" Hike=1.5" Lip=0 . 375" X-fall=0. 021 / ' Parkway 10' wide @ 0. 021/ ' (net width from CF=9.88 ' ) n(road) =. 015 n (parkway)=. 025 Flow designated to start on 1 side ---------------=----------- Street Hydraulics Results ---------------------_ Street capacity to T.C. 1 side = 31 .7 cfs, to R/W 2 sides = 209.3 cfs . Flow designated on 1 side but WSE > crown. Excess spills to other side. Q on 1 side=35 .3 cfs for Tt of 2 .21 min. Davg=.52 ' Aavg=4 .18 sf Vavg=8 . 43 fps At end of reach: Q=41.26 cfs On first side Q=35.30 D=.52 ' Flow area=4 . 19sf V=8 . 43fps D*V=4 .35 Flooded width=20. 94 ' Sf=. 06071 WSE is . 02 ' above top of curb. On other side Q=5. 96 D=.31 ' Flow cross-section, 4 :1 vertical exageration: ------------------------------- Hydrology Results ----------- Tc= 6. 86 + 2 .21 = 9. 07 min. I=3.714"/hr Q(subarea) =22 .77 cfs Subarea Fp=1 . 607"/hr C=. 828 Q(tot)=41 .26 cfs ---------------- ----- ------ Stream 5 Summary -----_ ------------------------ At node 173 L=1600' Fp=1. 648"/hr Ai=0. 698 q=3. 10 cfs/ac A = 13.30 acres Tc = 9.07 minutes Q = 41.26 cfs Record 28 Node 173 to 128 Street + Pipe Pipe Q enters at upstream node . Subarea Q enters street uniformly distributed along reach. St.rPPt n is its capacity. Pine carries excess . Tc is based on shorter travel time of the pipe or street. Stream #5 Subarea #24 [Mission Trail from Mariposa Rd to junction at Elberta Rd] Elevation 1284 . 00 to 1282 . 00 delta H=2 .0 ' Length=300' Slope=. 00667 Subarea: 0 . 441 acre Soil: A Land use : Commercial/Industrial Pervious portion RI (AMC2)=32 Ai=. 90 Ap=.10 Street: Template 5 Riv Co Arterial 128 ' R/W (Std 92-1) Half-width (C/L to flowline) =43' CF=8" Batter=0 .25 h/v Gutter width=24" Hike=1 .5" Lip=0 .375" X-fall=0 .021 /' Parkway 21 ' wide @ 0 .021 /' (net width from CF=20.83' ) n(road) =.015 n(parkway)=.025 (21' dry lane width from C/L not required for 100-yr frequency) Flow designated to start on 1 side -------------------------- Street Hydraulics Results --------------------------- Street capacity to T.C. 1 side = 26. 6 cfs, to R/W 2 sides = 266.6 cfs . At end of reach: Q=42 .58 cfs D=.77 ' Flow area=11. 30 sf V=3 .77 fps D*V=2 . 91 Flooded width one side=38 .39' Sf=.00667 WSE is . 11' above top of curb. Parallel pipe designated but not needed. V above is mean velocity from conveyances of road and parkway: Half-road: Q=42 .39 cfs A=11 .02 sf V=3. 85 fps Parkway: Q= 0 .20 cfs A=0.28 sf V=0. 69 fps Flow cross-section, 4 :1 vertical exageration: Scale is reduced when R/W > 120' ---- -------------------------- Hydrology Results ------------------------------ Tc= 9. 07 + 1.33 = 10 .40 min. I=3. 478"/hr Q (subarea)=1. 32 cfs Subarea Fp=1.561"/hr C=. 860 Q(tot)=42 . 58 cfs ------------------------------- Stream 5 Summary -------------------------------- At node 128 L=1900 ' Fp=1. 645"/hr Ai=0. 705 q=3. 10 cfs/ac A = 13.741 acres To = 10.40 minutes Q = 42 .58 cfs This stream is to confluence with 1 other per record 25 Record 29 Confluencing 2 streams at node 128 [at Mission Trail & Elberta Rd] Stream: 4 5 , Tc: 14 . 09 10. 40 I : 3.007 3.478 Qpeak: 185.16* 42 .58 x Ratio: I4/I5 = Qadj : 185 . 16 + 36. 82 = 221. 98 Confluenced Q = 221.98 cfs at Tc = 14 . 09 minutes from 86. 44 acres Longest stream = 4980' from node 121 Confluenced streams become stream #4 ------------------------------- Stream 4 Summary ------------------------------- At node 128 L=4980 ' Fp=1 . 034"/hr Ai=0. 432 q=2 .57 cfs/ac A = 86.441 acres To = 14.09 minutes Q = 222.0 cfs Record 30 Node 128 to 129 Pipe flow, program sized Stream #4 (Line B in Elberta Rd extention westerly from city limit into Lake Elsinore] Elevation 1282 .00 to 1264 . 00 delta H=18 . 0 ' Length=270 ' Slope=.06667 Subarea: 0 acre Pipe: Velocity headloss coefficient=0 .5 n=0 .013 Allowable pipe size range: 36" to 96" 1 42" pipe (d=3 .50' ) Q=221 . 98 cfs D=2 . 92 ' D/d=. 833 Sf=.04735 Losses: Entrance+minor=0. 5V2/2g=5.22 ' Friction=12 .78 ' Total=18 . 01 ' X--Sect A=8 . 56 sf V=25.92 fps Tt=0. 17 min. ----------------------------- -� Hydrology Results ---- ------------------- ------ Tc= 14 . 09 + . 17 = 14 .26 min. I=2 . 98911/hr Q (subarea) =.00 cfs Q (tot)=221. 98 cfs ------------------------------- Stream 4 Summary ------------------------- At node 129 L=5250 ' Fp=1 . 034"/hr Ai=0. 432 q=2 . 57 cfs/ac A = 86.441 acres To = 14.26 minutes Q = 222 .0 cfs New Stream Record 31 Node 131 to 132 Initial subarea Stream #6 Subarea #25 [S1V1] Elevation 1983 . 00 to 1800 . 00 delta H=183 .0 " Length=630 ' Slope=.29048 Subarea: 1 . 4 acres Soil: D Land use : Natural-Poor RI (AMC2) =88 Ai=. 00 Ap=1. 00 ----------------------------------- Hydrology Results ------------- -------------- k=.530 Tc= 8 . 94 min. I=3 .74111/hr Q (subarea)=4 . 49 cfs Subarea Fp=.173"/hr C=. 858 Q(tot)=4 .49 cfs ------------------------------_--- Stream 6 Summary --- --------------------------- At node 132 L=630 ' Fp=0. 173"/hr Ai=O q=3 .21 cfs/ac A = 1 .40 acres To = 8 .94 minutes Q = 4.49 cfs Record 32 Node 132 to 133 Natural mountain channel Subarea Q enters stream uniformly distributed along reach. Stream #6 Subarea #26 [S1V2] Elevation 1800 .00 to 1500 . 00 delta H=300 .0' Length=710 ' Slope=.42254 Map slope adjusted to .2165 effective slope per RCFCD Hyd Man Plate D-6.2 Subarea: 3 acres Soil: D Land use : Natural-Poor RI (AMC2) =88 Ai=.00 Ap=1. 00 ------------------------------ - Hydraulics Results -----------------------=------- V avg = 5 . 29 fps for avg Q of 8 .8 cfs . Tt = 2 . 24 min. ---------------=-=--------------- Hydrology Results -------------------------------- Tc= 8 . 94 + 2 .24 = 11 . 18 min. I=3.361"/hr Q (subarea)=8 . 61 cfs Subarea Fp=.17211/hr C=.854 Q(tot) =13 .10 cfs -------------------- ----------- Stream 6 Summary ------------------------- ------- At node node 133 L=1340 ' Fp=0.173"/hr Ai=O q=2 . 98 cfs/ac A = 4.40 acres To = 11.18 minutes Q = 13.10 cfs Record 33 Node 133 to 134 Natural valley channel Subarea Q enters stream uniformly distributed along reach. Stream #6 Subarea #27 [S1W to proposed extension of exist culvert under freeway] Elevation 1500 . 00 to 1415 . 00 delta H=85. 0' Length=730 ' Slope=.11644 Subarea: 13. 9 acres Area portions, soil & land use: 3 acres soil A, Natural-Poor RI (AMC2)=62, Ap=1 10 . 9 acres soil D, Natural-Poor RI (AMC2)=88, Ap=1 AvprAnPS : RI=82 Ai=O Ai=O V avg = 11 . 59 fps for avg Q of 31.51 cfs . Tt = 1 . 05 min. ---------------------------------- Hydrology Results ------------ ----------------- Tc= 11.18 + 1. 05 = 12 .23 min. I=3 .219"/hr Q(subarea)=36.82 cfs Subarea Fp=.276"/hr C=. 823 Q(tot)=49. 92 cfs ------------------------------- Stream 6 Summary --------------------------_------- At node 134 L=2070 ' Fp=0.251"/hr Ai=O q=2 .73 cts/ac A = 18.30 acres Tc = 12.23 minutes Q = 49.92 cfs Record 34 Node 134 to 161 Pipe flow, specified size & number Stream #6 [exist 36" culvert and proposed extension to Sylvester Rd] Elevation 1415.00 to 1368 . 00 delta H=47 . 0' Length=520 ' Slope=. 09038 Subarea: 0 acre Pipe: Velocity headloss coefficient=1 .2 n=0 .024 1 36" pipe (d=3 .00' ) Q=49. 92 cfs --------------------------- Pipe Hydraulics Results -- ---- --------------- D=1. 46' D/d=.488 Sf=. 08297 Losses : Entrance+minor=1 .2V2/2g=3.96' Friction=43.15 ' Total=47 . 11 ' X-Sect A=3 .43 sf V=14.57 fps Tt=0 .59 min. -=_--w---------- ---------------- Hydrology Results --_----------------------------- Tc= 12 .23 + .59 = 12 .82 min. I=3. 146"/hr Q(subarea) =. 00 cfs Q(tot)=49. 92 cfs ------------ ------------------- Stream 6 Summary --------------------------------- At node 161 L=2590 ' Fp=0 .251"/hr Ai=O q=2 .73 cfs/ac A = 18.30 acres Tc = 12.82 minutes Q = 49.92 cfs This stream is to confluence with 1 other per record 43 New Stream Record 35 Node 141 to 142 Initial subarea Stream #7 Subarea #28 [S1S] Elevation 1930 . 00 to 1544 . 00 delta H=386 . 0 ' Length=1000' Slope=. 3860 Subarea: 5. 7 acres Soil: D Land use: Natural-Poor RI (AMC2) =88 Ai=. 00 Ap=1 . 00 Hydrology Results -=--------------=-------=--- _�_ k=.530 Tc= 10 .16 min. 1=3 .51811/hr Q(subarea)=17 .16 cfs Subarea Fp=.173"/hr C=. 856 Q(tot) =17 .16 cfs ------�-------_------------------ Stream 7 Summary ------------------------------- At node 142 L=1000 ' Fp=0 .173"/hr Ai=O q=3 . 01 cfs/ac A = 5.70 acres Tc = 10.16 minutes Q = 17.16 cfs Record 36 Node 142 to 143 Natural valley channel Subarea Q enters stream uniformly distributed along reach. Stream #7 Subarea #29 [S1T to Hemple St . Land use: RM & EDR modeled as all natural--fair] Elevation 1544 .00 to 1456. 00 delta H=88 . 0 ' Length=680 ' Slope=.12941 Subarea: 17.4 acres Soil : D Land use: Natural-Fair RI (AMC2) =83 Ai=. 00 Ap=1 . 00 ------------------------------ Hydraulics Results -----------------------------__-- V avg = 13 .22 fps for avg Q of 41.67 cfs . Tt = .86 min. -------------------------------- Hydrology Results ___----------------------------- Tc= 10 .16 + . 86 = 11.02 min. I=3 .384"/hr Q(subarea)=49. 03 cfs Subarea Fp=. 253"/hr C=.833 Q(tot) =66 . 19 cfs At node 143 L=1680' Fp=0 .23311/hr Ai=O q=2 . 87 cfs/ac A = 23.10 acres Tc = 11.02 minutes Q = 66.19 cfs Record 37 Node 143 to 144 Natural valley channel Subarea Q enters stream uniformly distributed along reach. Stream #7 Subarea #30 [S1U to exist culvert under freeway] Elevation 1456. 00 to 1402 . 00 delta H=54 . 0 ' Length=600 ' Slope=.0900 Subarea: 11 acres Area portions, soil & land use: 5 acres soil A, Natural-Fair RI (AMC2) =46, Ap=1 6 acres soil D, Natural-Fair RI (AMC2) =83, Ap=1 Averages : RI=66 Ai=O Ai=O ------------------=-- ------ Hydraulics Results -----_-------------------------- V avg = 13 .29 fps for avg Q of 79.35 cfs. Tt = .75 min. ------------------------------ Hydrology Results -=----------------------------- Tc= 11.02 + .75 = 11 .77 min. I=3.278"/hr Q(subarea)=26.32 cfs Subarea Fp=. 619"/hr C=.730 Q(tot)=92 .51 cfs ------------------------------- Stream 7 Summary ------------------------------- At node 144 L=2280' Fp=0 .358"/hr Ai.=O q=2 .71 cfs/ac A = 34.10 acres Tc = 11.77 minutes Q = 92.51 cfs Record 38 Node 144 to 154 Pipe flow, specified size & number Stream #7 [freeway. exist culvert to proposed junction] Elevation 1402 .00 to 1372 .00 delta H=30.0 ' Length=430 ' Slope=.06977 i Subarea: 0 acre Pipe: Velocity headloss coefficient=1 .2 n=0 .024 1 36" pipe (d=3 .001 ) Q=92 .51 cfs -----=------------------ Pipe Hydraulics Results ----_--------------------_---_ D=2 . 58 ' D/d=. 858 Sf=. 06089 Losses : Entrance+minor=1 .2V2/2g=3.83' Friction=26.18 ' Total=30. 01 ' X-Sect A=6. 46 sf V=14 .33 fps Tt=0 .50 min. ------------------------------- Hydrology Results ---------------------------------- Tc= 11.77 + .50 = 12 .27 min. I=3. 213"/hr Q(subarea)=. 00 cfs Q(tot)=92 .51 cfs ------------------------------- Stream 7 Summary -------------------------------_-- At node 154 L=2710 ' Fp=0 . 358"/hr Ai=O q=2 .71 cfs/ac A = 34.10 acres Tc = 12.27 minutes Q = 92 .51 cfs This stream is to confluence with 1 other per record 41 New Stream Record 39 Node 151 to 152 Initial subarea Stream #8 Subarea #31 [S1X1 outside city limit in exist development] Elevation 1710 . 00 to 1570 . 00 delta H=140. 0' Length=560 ' Slope=.2500 Subarea: 2 . 9 acres Soil: D Land use: 14-acre lots (LDR) Pervious portion RI (AMC2)=75 Ai=.40 Ap=. 60 ----------------r----------------- Hydrology Results ------------------------------- k=. 421 Tc= 6. 98 min. I=4 .21211/hr Q(subarea)=10 . 36 cfs Subarea Fp=.402"/hr C=. 848 Q(tot)=10.36 cfs ------------------------------- Stream 8 Summary -------------------------------- At node 152 L=560 ' Fp=0 .402"/hr Ai=0.4 q=3.57 cfs/ac A = 2 .90 acres To = 6.98 minutes Q = 10.36 cfs Record 40 Node 152 to 153 Natural valley channel Subarea Q enters stream uniformly distributed along reach. Stream #8 Subarea #32 [S1X2 in exist development outside city limit to exist culvert under freeway] Elevation 1570.00 to 1410 .00 delta H=160 . 0' Length=1060 ' Slope=. 15094 Subarea: 20 .3 acres Area portions, soil & land use: 16 .3 acres soil A, '-�-acre lots (LDR) Pervious portion RI (AMC2)=32, Ap=0. 6 4 acres soil D, 14-acre lots (LDR) Pervious portion RI (AMC2)=75, Ap=0. 6 Averages: RI=40 Ai=0 . 4 Ai=0. 4 ----------_----- _ ---_---- Hydraulics Results ------------------------------- V avg = 13 . 94 fps for avg Q of 38 .24 cfs . Tt = 1 .27 min. -- Hydrology Results ------------------ ------------ Tc= 6.98 6.98 + 1.27 = 8 .25 min. I=3 . 888"/hr Q (subarea) =55 .75 cfs Subarea Fp=1.39511/hr C=.706 Q (tot) =66.11 cfs --------------------------------- Stream 8 Summary ------- ----------------------- At node 153 L=1620' Fp=1.271"/hr Ai=0 . 4 q=2 . 85 cfs/ac A = 23.20 acres To = 8.25 minutes Q = 66.11 cfs Record 41 Node 153 to 154 Pipe flow, specified size & number Stream #8 [30" then 24" ex. RCP culvert under fwy, then proposed 24" RCP] Elevation 1402 . 00 to 1372 . 00 delta H=30. 0 ' Length=680 ' Slope=.04412 Subarea: 0 acre Pipe: Velocity headloss coefficient=l n=0.013 1 24" pipe (d=2 . 001 ) Q=66. 11 cfs --------------------------- Pipe Hydraulics Results ----------------------------- D=2 .00 ' Full. Sf=. 08540 Losses: Entrance+minor=lV2/2g=6. 88 ' Friction=58 . 07 ' Total=64 .9_6' X-Sect A=3 . 14 sf V=21.04 fps Tt=0. 54 min. based on 66. 1 cfs in full pipe (s) @ .0854 Q exceeds pipe capacity at available slope. Sufficient head is assumed. --.._- -------- __------ Hydrology Results ------------------------------ Tc= 8 .25 + .54 = 8 .79 min. I=3.77211/hr Q(subarea)=.00 cfs Q(tot) =66.11 cfs ------------------------------- Stream 8 Summary -------------------------- At node 154 L=2300 ' Fp=1.27111/hr Ai=0 . 4 q=2 . 85 cfs/ac A = 23.20 acres To = 8.79 minutes Q = 66.11 cfs This stream is to confluence with 1 other per record 38 Record 42 Confluencing 2 streams at node 154 [30" then 24" ex. RCP culvert under fwy, then to proposed 24" RCP] Stream: 7 8 Tc: 12 .27 8.79 I : 3 .213 3. 772 Qpeak: 92 .51* 66. 11 x Ratio: I7/I8 Qadj : 92 .51 + 56.32 = 148 .83 Confluenced Q = 148 .83 cfs at Tc = 12 .27 minutes from 57 .30 acres Longest stream = 2710 ' from node 141 Confluenced streams become stream #7 ---------------------------------- Stream 7 Summary -- _--__--- --------------------- At node 154 L=2710 ' Fp=0 .727"/hr Ai=0 . 162 q=2 . 60 cfs/ac A = 57 .30 acres To = 12 .27 minutes Q = 148 .8 cfs Record 43 Node 154 to 161 Pipe flow, program sized Stream #7 [culvert extension along freeway to junction at Sylvester Rd] Elevation 1372.00 to 1368 . 00 delta H=4 .0' Length=150 ' Slope=.02667 Subarea: 0 acre Pipe: Velocity headloss coefficient=0 .2 n=0 .015 Allowable pipe size range: 18" to 96" ----------------------------- Pipe Hydraulics Results -------------------=-------- 1 45" pipe (d=3. 75' ) Q=148 . 83 cfs D=2 . 97 ' D/d=.793 Sf=. 02147 Losses : Entrance+minor=0 .2V2/2g=0.78 ' Friction=3.22 ' Total=4 .00 ' X-Sect A=9 .40 sf V=15 . 84 fps Tt=0 .16 min. ------------------ --------- Hydrology Results ---------------------------- -- Tc= 12 .27 + .16 = 12 .43 min. I=3 .194"/hr Q(subarea)=.00 cfs Q(tot)=148.83 cfs ----------------------- --��--- Stream 7 Summary - -------_ ---------------------- At node 161 L=2860' Fp=0 . 727"/hr Ai=0 .162 q=2. 60 cfs/ac A = 57 .30 acres To = 12.43 minutes Q = 148 .8 cfs This stream is to confluence with 1 other per record 34 Record 44 Confluencing 2 streams at node 161 [Sylvester Rd at freeway] Stream: 6 7 Tc: 12 . 82 12 .43 1: 3.146 3. 194 Qpeak: 49. 92 148 .83* x Ratio: Tc7/Tc6 Qadj : 48 .39 + 148 . 83 = 197 .22 Confluenced Q = 197 .22 cfs at Tc = 12 . 43 minutes from 75 . 60 acres Longest stream = 2860 ' from node 141 Confluenced streams become stream #6 ---------------------------==--- Stream 6 Summary --_---------------------------- At node 161 L=2860 ' Fp=0 . 612"/hr Ai=0 . 123 q=2 . 61 cfs/ac A = 75.60 acres Tc = 12.43 minutes Q = 197 .2 cfs Record 45 Node 161 to 162 Pipe flow, program sized Subarea Q enters stream at downstream node. Stream #6 Subarea #33 [S1Y in Sylvester Rd to Lakeview Ter/Valley View Av?] Elevation 1368 . 00 to 1348 . 00 delta H=20 . 0' Length=330 ' Slope=.06061 Subarea: 13 .2 acres Area portions, soil & land use: 8 .8 acres soil A, Specified Ai 0. 4 Pervious portion RI (AMC2)=32, Ap=0. 6 4 . 4 acres soil A, 5 - 8 du/acre (MHDR) Pervious portion RI (AMC2)=32, Ap=0.45 Averages : RI=32 Ai=0.45 Ai=0 .45 Pipe: Velocity headloss coefficient=l n=0 .013 Allowable pipe size range: 18" to 9611 --------------- - --------- Pipe Hydraulics Results -----------------------_----- 1 42" pipe (d=3 . 50 ' ) Q=197 .22 cfs D=2 . 97 ' D/d=. 847 Sf=. 03637 Losses : Entrance+minor=lV2/2g=8 .01' Friction=12 .00' Total=20. 01' X-Sect A=8 . 69 sf V=22 . 69 fps Tt=0.24 min. ---------------------------------- Hydrology Results --------------------_---------- Tc= 12 .43 + .24 = 12 . 67 min. I=3. 164"/hr Q(subarea) =27 .82 cfs Subarea Fp=1 . 49511/hr C=. 666 Q(tot)=225 . 05 cfs ---------------------------------- Stream 6 Summary -------------------------------- At node 162 L=3190 ' Fp=0 . 743"/hr Ai=0 . 171 q=2 .53 cfs/ac A = 88.80 acres Tc = 12. 67 minutes Q = 225.0 cfs Record 46 Node 162 to 163 Pipe flow, program sized Subarea Q enters stream at downstream node. Stream #6 Subarea #34 [S1Z1 in FCD MDP Sedco Line A: 24" . Sylvester Rd. ] Elevation 1348 .00 to 1286.00 delta H=62. 0 ' Length=1130' Slope=.05487 Subarea: 9 .3 acres Area portions, soil & land use: 8.5 acres soil A, 14 - 20 du/acre (VHDR) Pervious portion RI (AMC2)=32, Ap=0.2 0.8 acres soil A, Commercial/Industrial Pervious portion RI (AMC2)=32, Ap=0.1 Averages: RI=32 Ai=0.81 Ai=0 .81 Pipe: Velocity headloss coefficient=0.2 n=0. 013 Allowable pipe size range: 18" to 96" --------------------------- Pipe Hydraulics Results ---------------------------- 1 42" pipe (d=3 .501 ) Q=225. 05 cfs D=2 .79' D/d=.797 Sf=. 05281 Losses : Entrance+minor=0 .2V2/2g=2 .33 ' Friction=59. 68 ' Total=62 .01' X-Sect A=8 .22 sf V=27 .39 fps Tt=0. 69 min. ------------------------------- Hydrology Results ------------------------------ Tc= 12 . 67 + . 69 = 13.36 min. I=3.08511/hr Q(subarea)=23.45 cfs Subarea Fp=1 .47711/hr C=. 818 Q (tot)=248 . 50 cfs ------------------------------- Stream 6 Summary ------------------------------- At node 163 L=4320' Fp=0.813"/hr Ai=0.232 q=2 .53 cfs/ac A = 98. 10 acres Tc = 13.36 minutes Q = 248.5 cfs Entire study area = 305.74 acres Average Fp=0.902 Average Ai=0.326 End of RMH run for file C:\Program Files\Microsoft Visual Studio\VB98\RMH 9.41\Wil MDP S1 alt2.RMR edited 06-19-2015 10:09 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 ************************** DESCRIPTION OF STUDY ************************** * MISSION TRAIL APARTMENTS OFF-SITE HYDROLOGY * 100-YEAR FLOW * BY KAM 051818 ************************************************************************** FILE NAME: MTOS100.DAT TIME/DATE OF STUDY: 09:05 05/14/2018 ----------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ----------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.320 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.980 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.540 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4809628 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4792280 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.500 SLOPE OF INTENSITY DURATION CURVE = 0.4792 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of--Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* Max Capacity of existing Lat "B-8" = 20 CFS Bypass Flow = 248.5 cfs - 20 cfs= 228.5 cfs **************************************************************************** FLOW PROCESS FROM NODE 163.00 TO NODE - 163.00 IS CODE = 7 ------------------------------------------------------------------------------ »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< 1 USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 13.40 RAIN INTENSITY(INCH/HOUR) = 3.08 TOTAL AREA(ACRES) = 98.10 TOTAL RUNOFF(CFS) = 228.50 **************************************************************************** FLOW PROCESS FROM NODE 163.00 TO NODE 112.00 IS CODE = 61 ------------------------------------------------------------------------------ »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< UPSTREAM ELEVATION(FEET) = 1280.90 DOWNSTREAM ELEVATION(FEET) = 1279.80 STREET LENGTH(FEET) = 326.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-Curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 229.36 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.20 HALFSTREET FLOOD WIDTH(FEET) = 76.44 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.37 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 4.03 STREET FLOW TRAVEL TIME(MIN.) = 1.61 Tc(MIN.) = 15.01 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.914 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8762 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 0.67 SUBAREA RUNOFF(CFS) s 1.71 TOTAL AREA(ACRES) = 98.8 PEAK FLOW RATE(CFS) = 230.21 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 1.20 HALFSTREET FLOOD WIDTH(FEET) = 76.50 FLOW VELOCITY(FEET/SEC.) = 3.37 DEPTH*VELOCITY(FT*FT/SEC.) = 4.04 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 112.00 = 326.00 FEET. Max Capacity of existing Lat "B-7" = 16.0 CFS Bypass Flow = 230.2 cfs - 16.0 cfs = 214.2 cfs **************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 7 ---------------------------------------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 15.00 RAIN INTENSITY(INCH/HOUR) = 2.91 TOTAL AREA(ACRES) = 98.80 TOTAL RUNOFF(CFS) = 214.20 **************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 61 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< UPSTREAM ELEVATION(FEET) = 1279.80 DOWNSTREAM ELEVATION(FEET) = 1277.50 STREET LENGTH(FEET) = 321.00 CURB HEIGHT(INCHES) = 8.0 2 STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 214.77 ***STREET FLOW SPLITS OVER STREET-CROWN*** FULL DEPTH(FEET) = 1.16 FLOOD WIDTH(FEET) = 74.58 FULL HALF-STREET VELOCITY(FEET/SEC.) = 4.72 SPLIT DEPTH(FEET) = 0.92 SPLIT FLOOD WIDTH(FEET) = 50.93 SPLIT FLOW(CFS) = 67.38 SPLIT VELOCITY(FEET/SEC.) = 4.11 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.16 HALFSTREET FLOOD WIDTH(FEET) = 74.58 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.72 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 5.47 STREET FLOW TRAVEL TIME(MIN.) = 1.13 Tc(MIN.) = 16.13 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.815 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8756 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) = 1.13 TOTAL AREA(ACRES) = 99.3 PEAK FLOW RATE(CFS) = 215.33 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 1.16 HALFSTREET FLOOD WIDTH(FEET) = 74.58 FLOW VELOCITY(FEET/SEC.) = 4.72 DEPTH*VELOCITY(FT*FT/SEC.) = 5.47 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 113.00 = 647.00 FEET. Max Capacity of existing Lat "B-6" = 16.1 CFS Bypass Flow = 215.3 cfs - 16.1 cfs = 199.2 cfs **************************************************************************** FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 7 --------------------------------------------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 16.10 RAIN INTENSITY(INCH/HOUR) = 2.82 TOTAL AREA(ACRES) = 99.30 TOTAL RUNOFF(CFS) = 199.20 **************************************************************************** FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 1 -----------------__---------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.10 RAINFALL INTENSITY(INCH/HR) = 2.82 TOTAL STREAM AREA(ACRES) = 99.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 199.20 From Wildmar Drainage S-1 Hydrology At node 128, Q100=222.0 cfs Tc=14.1 min Atot=86.4 AC **************************************************************************** 3 FLOW PROCESS FROM NODE 128.00 TO NODE 113.00 IS CODE = 7 ---------------------------------------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 14.10 RAIN INTENSITY(INCH/HOUR) = 3.00 TOTAL AREA(ACRES) = 86.40 TOTAL RUNOFF(CFS) = 222.00 **************************************************************************** FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 1 ------------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.10 RAINFALL INTENSITY(INCH/HR) = 3.00 TOTAL STREAM AREA(ACRES) = 86.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 222.00 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 199.20 16.10 2.818 99.30 2 222.00 14.10 3.003 86.40 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 396.45 14.10 3.003 2 407.53 16.10 2.818 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 396.45 Tc(MIN.) = 14.10 TOTAL AREA(ACRES) = 185.7 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 113.00 = 647.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 114.00 TO NODE 115.00 IS CODE = 61 ----------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< UPSTREAM ELEVATION(FEET) = 1277.50 DOWNSTREAM ELEVATION(FEET) = 1271.50 STREET LENGTH(FEET) = 544.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 4 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 399.62 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.18 HALFSTREET FLOOD WIDTH(FEET) = 75.89 AVERAGE FLOW VELOCITY(FEET/SEC.) = 6.02 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 7.13 STREET FLAW TRAVEL TIME(MIN.) = 1.51 Tc(MIN.) = 15.61 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.860 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7794 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 2.84 SUBAREA RUNOFF(CFS) = 6.33 TOTAL AREA(ACRES) = 188.5 PEAK FLOW RATE(CFS) = 402.78 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 1.19 HALFSTREET FLOOD WIDTH(FEET) = 76.01 FLOW VELOCITY(FEET/SEC.) = 6.03 DEPTH*VELOCITY(FT*FT/SEC.) = 7.16 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 115.00 = 1191.00 FEET. 5 -------------------------------------- ** RESULTS OF IRREGULAR CHANNEL ANALYSIS ** CALCULATIONS BASED ON MANNINGS EQUATION WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS (c) Copyright 1983-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 ************************** DESCRIPTION OF STUDY ************************** * COMBINED FLOW AT SECTION A-A (100-YEAR) * BASED ON SURVEY SHOTS OF EX STREET AT STA 58+70 MISSION TRAIL * BY KAM 041618 ************************************************************************** TIME/DATE OF STUDY: 09:13 05/14/2018 ----------------------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1.84 2 2.00 0.76 3 32.00 0.63 4 32.10 0.00 5 34.00 0.18 6 82.00 0.96 SUBCHANNEL SLOPE(FEET/FEET) = 0.015000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 •-•SUBCHANNEL FLOW(CFS) 1268.6 ( E�T I�r • • SUBCHANNEL FLOW AREA(SQUARE FEET = 42.92 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 4.468 SUBCHANNEL FROUDE NUMBER = 1.563 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 80.70 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.53 --------------------------------------------___------------------------------- ---------------------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 2 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 82.00 0.96 2 107.00 0.44 3 110.00 0.11 4 120.00 0.74 5 132.00 1.74 SUBCHANNEL SLOPE(FEET/FEET) = 0.015000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0,015000 SUBCHANNEL FLOW(CFS) - EP%•ST SfL . .. . . . . . . . . . . . . . . . . . . SUBCHANNEL FLOW AREA(SQUARE FEET) = 19.16 6 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 7.174 SUBCHANNEL FROUDE NUMBER = 1.874 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 42.08 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.46 ---------------------------------------------------------------------------- ----------------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 402.80 COMPUTED IRREGULAR CHANNEL FLOW(CFS) - 402.84 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WA SU FACE ELEVATION. .. . . . . . . . . . . . . . . . . . . . . . . . . . . �1.14 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. ---------------------------------------------------------------------------- 7 Worksheet for Combination Inlet On Grade - 1 am o e tDeS o Solve For Efficiency Discharge 268.60 ft'/s Slope 0.01280 ft/ft �tQ �cFc it oic— l aro, G`31of Gutter Width 2.00 ft a03� C-o?4?-*-4PoUf'-')VG Gutter Cross Slope 0.08 ft/ft C-PI%¢SSIVN ogi7 t— tD PO,'� Road Cross Slope 0.02 ft/ft r�nC� PA ^ Roughness Coefficient 0.015 Local Depression 4.00 in Local Depression Width 4.00 ft GtC�fZ Yv>Z NIUGYIC Ct'0 G_C Grate Width 2.00 ft 1�`'� ►-� Grate Length 23.64 ft �� ' �-�'�e E '507o Grate Type P-50 mm(P-1-7/8") Cg �.50 (p rJ) y ULwrQ Clogging 14.00 % qq 7 Curb Opening Length 23.64 ft �%1`i/d un susN tuRL4tx'_" Calculation Option Use Both Grate Flow Option Exclude None 44 q Su LS TShgHa6Y,.1d5.�Ik'S Efficiency 76.33 Intercepted Flow 205.02 ft=/s Bypass Flow 63.58 Wis Spread 54.53 ft Depth 1.21 ft Flow Area 29.85 ft2 Gutter Depression 0.12 ft Total Depression 0.45 ft Velocity 9.00 ft/s Splash Over Velocity 283.02 ft/s Frontal Flow Factor 1.00 Side Flow Factor 0.72 Grate Flow Ratio 0.10 Equivalent Cross Slope 0.03168 ft/ft Active Grate Length 20.33 ft Length Factor 0.02 Total Interception Length 167.67 ft Bentley Systems,Inc. Haestad Methods SoliBliMlOpfffewMaster VS 1(SELECTseries 1) 108.11.01.031 4/16/2018 8:48:09 AM 27$lemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 2 See above Proposed Flow-by Combination Inlet Q(intercepted)=205.0 cfs Q (bypass) = 63.6 cfs (west side)+134.4 cfs (east side)=198.0 cfs FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 7 ----------------------------------------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 15.60 RAIN INTENSITY(INCH/HOUR) = 2.86 TOTAL AREA(ACRES) = 188.50 TOTAL RUNOFF(CFS) = 198.00 FLOW PROCESS FROM NODE 115.00 TO NODE 116.00 IS CODE = 61 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< ---------------------------------------------------------------------------- UPSTREAM ELEVATION(FEET) = 1271.50 DOWNSTREAM ELEVATION(FEET) = 1269.30 STREET LENGTH(FEET) = 284.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 206.03 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.03 HALFSTREET FLOOD WIDTH(FEET) = 61.83 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.57 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 4.71 STREET FLOW TRAVEL TIME(MIN.) = 1.04 Tc(MIN.) = 16.64 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.774 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7766 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 7.46 SUBAREA RUNOFF(CFS) = 16.07 TOTAL AREA(ACRES) = 196.0 PEAK FLOW RATE(CFS) = 214.07 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 1.04 HALFSTREET FLOOD WIDTH(FEET) = 63.06 FLOW VELOCITY(FEET/SEC.) = 4.59 DEPTH*VELOCITY(FT*FT/SEC.) = 4.79 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 116.00 = 1475.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 196.0 TC(MIN.) = 16.64 PEAK FLOW RATE(CFS) = 214.07 -------------------------------------------- --- ---------------------- --- END OF RATIONAL METHOD ANALYSIS PROPOSED CONDITION OFF-SITE HYDROLOGY MAP CITY OF LAKE ELSINORE CITY OF WILDOMAR t PL R/W 60'PROPOSED R/W _I r1( 30'EXISTING R 50'EXISTING R 1 22 101. WEST SIDE Q10 157.5 CFS 0100=268.6 CFS EAST SIDE Q10=79.0 Q100=134.4 CFS TR 31920-12 5' 5'MIN. 50' 25' I LOT 29 1 , WALK WE TN ULFIH OFTLOWI = D(IST.PAVEMENT PAD=1275.1 1 10 YR DEPTH OF FLOW=0.94' E=74.20 VARIES 2.0% ) .0% 2.0% VARIES% 1 6°A.C./14°A.B.(MIN.) 0.33, 5'WIDE SIDEWALK TO BE DETERMINED BY SOILS ENGINEER STREET GRADE 1.28% PER DOE CURB SECTION A-A (0100=402.8 CFS; 010=229.1 CFS) 1 �,�1 '. q PER SID NIY OF I ` 11.)a /'. ell, f2 o RIVERSIDE NW#201 •n i III ! �, MISSION TRAIL- STA. 58+00 i BASED ON FIELD SURVEY SHOTS H.rs ,....� 1 ■A3 .� a 1�I;� {F 4/V4CITY OF LAKE ELSINORE CITY OF WILDOMAR - - R/W 60'PROPOSED R/W 30'EXISTING R/W 50'EXISTING R WEST SIDE Q10=32.9 CFS Q100=63.6 CFS EAST SIDE Q10=74.0 100=136.6 CFS 50' 25' = 1 100 YR DEPTH OF FLOW=0.85' WSE=71.1 WALK EXIST.PAVEMENT � � 1 1' 1" 1 10 YR DEPTH OF FLOW=0.6T 5E=70.2 ♦ „ r �42 ♦ r,•` 1 �� o . ' 71.12 F 2.0% 70.41 UP 0% 2.0% � - �' ;• � A.c./14 MIN(MIN.) 0.33' ✓� s•wmE sIE. To BE S ENGINEER •'r '1, '•.1�'�R � � =� � BY SOILS ENGINEER STREET GRADE 1.00% RYPE' SECTION B-B (0100=198.0 CFS, 010=106.9 CFS) RIVERSIDE SD)#201 MISSION TRAIL-STA. 56+50 - � _ t. m�, �1M ="•.._e 1 a Ai Q f j AP`1 '�l� .i = al� N.TS t - _ CITY OF LAKE ELSINORE CITY OF WILDOMAR Mom R I i. � •`,�,• $� SlW r��1 ' R/W 60'PROPOSED R/W I177 V L ,i { ` , , `{73 •:�'• � ,, �� i 30'EXISTING R 50' EXISTING10, R W 20.5' 50' 25' 25' GVERnaw EXIST.PAVEMENT ��__. .�� r r'L �,•, ti _`� r '_ L L7 F i r 69P45 OF FLOW=0.82'(WSE=70.27) VARIE$7 FL I I 69.63 LIP �- 1 �y° • 123 C A.C./14-A.B.(MIN.1 1.23' TO BE DETERMINED uRe BY SOILS ENGINEER /FROM WILDOMAR SECTION C-C (0100=214.1 CFS, 010=116.9 CFS) Nfl2SIDE R51DE S�.f201 MISSION TRAIL-STA. 54+77 DRANAGE PLAN S-1 16 + - �� �- VTS 1 0 39 f Q=13'4 MI C� 1 Atot=94 MIN •- Ato�8.1 . 1(2ao.1s�$F� L Zr w._ '' St 1 ,.' l Q10-152.1 CF J _ T " - �• K�}, \\ �'" -' J///, to J i / f 11, FLOW COLLECTED INTO BASIN Q 20.0 CIs EX CB#38 1 010(BYPASS)=132.1 (W-21')FLOW- Q100(MPASS)=228.5 1279.8 FL. Tc- Q70=133.2 CF I N RY `o:. e x az" LEGEND INTO BASIN c WATERSHED BOUNDARY Q= 6.0 FS Q10�BYPASSS=117.2 CFS .�°'(3 ftF1 y =- Q100((BYPASS)=214.2 CFS EX CB 15 \` 4 ���, �11.�� - Tc=150 MIN FLOW-BY AFROM WILDOMAR SUB-AREA BOUNDARY 1 -L --- FLOWLINE AND DIRECTION OF FLOW �Atat=98.8 AC. I277.5 FL. Y'DRAINAGE PLAN 5-1128` 't� 7 �� �2•�� "•'� 'r Z•9 __ %� 11 100-215.3 CFS Q100=222.0 CFS >: _ - SUBAREA LABEL A5 FLOW COLLECTED Tc=14.1 MIN � 0'3 AREA(ACRES) Pan of this MOP study) �NT06.BASI NS t86.4 A `•� {,V' .^' Q1a(BYPASS)=101.8 cFFS$.,, L---- sling storm drain foci'' Q100(BYPASS)=199.2 CF$:Ct• CONFLUENCED FLOWS +S• Even d they are n01 y c=16.1 MIN Q10=225.1 CFS 4 G H �0 NODE NUMBER Atot=99.3 AC. -- :-� ul be improved in Q700=396.5 Cr y as was not stu d Tc=14.1 MIN 070 10-YEAR PEAK FLOW IN CFS c = - t =185.7 AC 0100 1 00-YE4R PEAK FLOW IN CFS 100 TOO-YEAR PEAK FLOW WATER SURFACE ELEVATION gSrr Q3 a a OCONF 100-YE4R CONFLUENCE PEAK FLOW IN CFS TO TIME OF CONCENTRATION(100-YEAR STORM)IN MIN MIN MINUTES // 9 yMQ c5Q CFS CUBIC FEET PER SECOND EG EXISTING GRADE ELEVATION ' s _ FG FINISH GRADE ELEVATION PROP COMBO CB '�' ` - N� _ FS FINISH SURFACE ELEVATION FLOW-BY t, t INV. INVERT OF PIPE 271.5 FL. A N Q(� 7µ j L=870' LENGTH OF FLOWPATH IN FEET 010=229.1 CFS 1 G p �,, ` e �I LP LENGTH OF PIPE IN FEET 115 100=402.9 CFS •� �jJ - -� �l '':.,,.e ,` u I Lc LENGTH OF CHANNEL IN FEET /// FLOW COLLECTED ,r f- •L HINT BASIN S. 0101�T)=124.6 CF 7 r �01 1 205.0 CFS - ' Q1o(YP S)=106.9 CFS l b� � ,���+ �� r / t• ,Q1 00(BYPASS)=198.o CFS Tc=1 .6 MIN rI yt ts� 1 / Atot=188.5 AC. sin 4H" ♦ •♦ �& ��. l�r{ j r�. I .. p o GRAPHIC SCALE F ,F ♦ Z A 5' Dp �' f 1 I � � a � zao o ,00 zao ,m ♦ ,,p� III + •?� .crco. _ � • W ( ) TC � IN FEET �� d,iFF - 1 r5 a � �O o�hti f \ - .-7 j)�IIIII{�II III III,''L%/ • x I 01 1 inch= 200 ft. for are ea slTaet O gtio '�. ' Sf l srowal epth HYDROLOGY MAP LEGEND ■ m d on \waSuhregionboundary _s CITY OF LAKE ELSINORE ..... ,_ w , l t 4 �.•�• subarea boundary 4 s W I L S O N M 1 KA M I 1 MISSION TRAIL APARTMENTS SHEET �I CORPORATION TRIBUTARY DRAINAGE AREA OF 1 9 CORPORATE PARK T:949-679-0090 SUITE 100 F.949-679-0091 OFF-SITE HYDROLOGY STUDY IRVINE, CA 92606 INTERIM CONDITION FILE N0. PROPOSED CONDITION RATIONAL METHOD ON-SITE HYDROLOGY **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982--2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 ***tt********************** DESCRIPTION OF STUDY ************************** * MISSION TRAIL APARTMENT PROJECT * ON-SITE 10-YEAR INTERIM HYDROLOGY * BY KAM 031818 ************************************************************************** FILE NAME: MTAP10.DAT TIME/DATE OF STUDY: 20:23 04/16/2018 ----------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.320 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.980 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.540 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 SLOPE OF 10-YEAR INTENSITY--DURATION CURVE = 0.4809628 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4792280 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 0.990 SLOPE OF INTENSITY DURATION CURVE = 0.4810 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 7 ----------------------------------------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER--SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 15.60 RAIN INTENSITY(INCH/HOUR) = 1.89 1 TOTAL AREA(ACRES) = 0.00 TOTAL RUNOFF(CFS) = 124.60 FLOW PROCESS FROM NODE 115.00 TO NODE 101.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ---------------------------------------------------------------------------- ------------------------------------------------------------------------------ ELEVATION DATA: UPSTREAM(FEET) = 1265.40 DOWNSTREAM(FEET) = 1260.00 FLOW LENGTH(FEET) = 226.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 29.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.59 ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 124.60 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 15.81 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 101.00 = 226.00 FEET. FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ---------------------------------------------------------------------------- ------------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.81 RAINFALL INTENSITY(INCH/HR) = 1.88 TOTAL STREAM AREA(ACRES) = 0.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 124.60 FLOW PROCESS FROM NODE 116.00 TO NODE 116.00 IS CODE = 7 SW OFF-Site �7}�►�e ---------------------------------------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ---------------------------------------------------------------------------- USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 16.60 RAIN INTENSITY(INCH/HOUR) = 1.84 TOTAL AREA(ACRES) = 104.00 TOTAL RUNOFF(CFS) = 35.20 FLOW PROCESS FROM NODE 116.00 TO NODE 101.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1262.40 DOWNSTREAM(FEET) = 1260.00 FLOW LENGTH(FEET) = 28.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 20.78 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 35.20 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 16.62 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 101.00 = 28.00 FEET. FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ---------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.62 RAINFALL INTENSITY(INCH/HR) = 1.84 2 TOTAL STREAM AREA(ACRES) = 104.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 35.20 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 124.60 15.81 1.880 0.00 2 35.20 16.62 1.835 104.00 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 158.09 15.81 1.880 2 156.85 16.62 1.835 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 158.09 Tc(MIN.) = 15.81 TOTAL AREA(ACRES) = 104.0 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 101.00 = 226.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 31 ------------------------------------------------------------_----------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1260.00 DOWNSTREAM(FEET) = 1259.30 FLOW LENGTH(FEET) = 58.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 51.0 INCH PIPE IS 36.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.37 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 158.09 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 15.88 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 102.00 = 284.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 1 ------------------------------------------_-------------------------------_------ »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.88 RAINFALL INTENSITY(INCH/HR) = 1.88 TOTAL STREAM AREA(ACRES) = 104.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 158.09 **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 100.00 IS CODE = 7 p} 51S1 i�]fi�lt { -------------------------------------------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 16.60 RAIN INTENSITY(INCH/HOUR) = 1.84 3 TOTAL AREA(ACRES) = 92.00 TOTAL RUNOFF(CFS) = 81.70 **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 102.00 IS CODE = 31 ------------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1261.00 DOWNSTREAM(FEET) = 1259.30 FLOW LENGTH(FEET) = 59.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 25.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.74 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 81.70 PIPE TRAVEL TIME(MIN.) = 0.06 TC(MIN.) 16.66 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 102.00 = 87.00 FEET. FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 1 ----------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.66 RAINFALL INTENSITY(INCH/HR) = 1.83 TOTAL STREAM AREA(ACRES) = 92.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 81.70 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 158.09 15.88 1.876 104.00 2 81.70 16.66 1.833 92.00 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 235.98 15.88 1.876 2 236.20 16.66 1.833 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 235.98 TC(MIN.) = 15.88 TOTAL AREA(ACRES) = 196.0 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 102.00 = 284.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 301.00 IS CODE 31 ----------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< -------------- ELEVATION DATA: UPSTREAM(FEET) = 1259.30 DOWNSTREAM(FEET) = 1258.30 4 FLOW LENGTH(FEET) = 67.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 57.0 INCH PIPE IS 41.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.20 ESTIMATED PIPE DIAMETER(INCH) = 57.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 235.98 PIPE TRAVEL TIME(MIN.) = 0.06 TC(MIN-) = 15.95 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 301.00 351.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 301.00 IS CODE 1 ----------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.95 RAINFALL INTENSITY(INCH/HR) = 1.87 TOTAL STREAM AREA(ACRES) = 196.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 235.98 **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 21 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE) ]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 170.00 UPSTREAM ELEVATION(FEET) = 1271.17 DOWNSTREAM ELEVATION(FEET) = 1268.90 ELEVATION DIFFERENCE(FEET) = 2.27 TC = 0.303*[ ( 170.00**3)/( 2.27)]**.2 = 5.606 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.095 USER-SPECIFIED RUNOFF COEFFICIENT = .8687 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) = 0.88 TOTAL AREA(ACRES) 0.32 TOTAL RUNOFF(CFS) 0.88 **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = 81 pa ----------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.095 USER--SPECIFIED RUNOFF COEFFICIENT = .8774 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) 0.71 SUBAREA RUNOFF(CFS) = 1.93 TOTAL AREA(ACRES) = 1.0 TOTAL RUNOFF(CFS) = 2.81 TC(MIN.) = 5.61 **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 301.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1261.90 DOWNSTREAM(FEET) = 1258.30 FLOW LENGTH(FEET) = 56.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.60 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 5 PIPE-FLOW(CFS) = 2.81 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 5.70 LONGEST FLOWPATH FROM NODE 302.00 TO NODE 301.00 = 226.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 301.00 IS CODE = 1 -------------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.70 RAINFALL INTENSITY(INCH/HR) = 3.07 TOTAL STREAM AREA(ACRES) = 1.03 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.81 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 235.98 15.95 1.872 196.00 2 2.81 5.70 3.070 1.03 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 87.20 5.70 3.070 2 237.69 15.95 1.872 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 237.69 Tc(MIN.) = 15.95 TOTAL AREA(ACRES) = 197.0 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 301.00 = 351.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 304.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1258.30 DOWNSTREAM(FEET) = 1256.00 FLOW LENGTH(FEET) = 413.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 66.0 INCH PIPE IS 52.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.72 ESTIMATED PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 237.69 PIPE TRAVEL TIME(MIN.) = 0.59 Tc(MIN.) = 16.53 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 304.00 = 764.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 10 ----------------------------------------------------------------------------- »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< 6 FLOW PROCESS FROM NODE 400.00 TO NODE 401.00 IS CODE = 21 D 3 ----------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*((LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 260.00 UPSTREAM ELEVATION(FEET) = 1270.30 DOWNSTREAM ELEVATION(FEET) = 1265.30 ELEVATION DIFFERENCE(FEET) = 5.00 TC = 0.303*[( 260.00**3)/( 5.00)]**.2 = 6.177 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.954 USER-SPECIFIED RUNOFF COEFFICIENT = .8882 SOIL CLASSIFICATION IS ''D'' SUBAREA RUNOFF(CFS) = 1.65 TOTAL AREA(ACRES) = 0.63 TOTAL RUNOFF(CFS) = 1.65 ##************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1261.50 DOWNSTREAM(FEET) = 1261.20 FLOW LENGTH(FEET) = 57.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.39 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.65 PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) = 6.46 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 402.00 = 317.00 FEET. ***********##*#***********************#*****************##*#**************** FLOW PROCESS FROM NODE 402.00 TO NODE 402.00 IS CODE = 81 D%A ------------------------------------------------------------------------------ »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.892 USER-SPECIFIED RUNOFF COEFFICIENT = .8760 SOIL CLASSIFICATION IS ''D'' SUBAREA AREA(ACRES) = 0.17 SUBAREA RUNOFF(CFS) = 0.43 TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 2.08 TC(MIN.) = 6.46 ******************#*****************#*##*#*#****#*************************** FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON--PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1261.20 DOWNSTREAM(FEET) = 1260.10 FLOW LENGTH(FEET) = 212.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.59 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.08 PIPE TRAVEL TIME(MIN.) = 0.98 Tc(MIN.) = 7.44 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 403.00 = 529.00 FEET. 7 FLOW PROCESS FROM NODE 403.00 TO NODE 403.00 IS CODE = 1 ----------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.44 RAINFALL INTENSITY(INCH/HR) = 2.70 TOTAL STREAM AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.08 ***********************************************#*********#****#*#*********** FLOW PROCESS FROM NODE 410.00 TO NODE 411.00 IS CODE = 21 D 5 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE) ]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 150.00 UPSTREAM ELEVATION(FEET) = 1269.55 DOWNSTREAM ELEVATION(FEET) = 1266.40 ELEVATION DIFFERENCE(FEET) = 3.15 TC = 0.303*[ ( 150.00**3)/( 3.15)]**.2 = 4.871 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.270 USER-SPECIFIED RUNOFF COEFFICIENT = .8892 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) = 1.08 TOTAL AREA(ACRES) = 0.37 TOTAL RUNOFF(CFS) = 1.08 **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 403.00 IS CODE = 31 ----------------------------------_------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ------------------ ELEVATION DATA: UPSTREAM(FEET) = 1261.20 DOWNSTREAM(FEET) = 1260.10 FLOW LENGTH(FEET) = 38.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.45 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.08 PIPE TRAVEL TIME(MIN.) = 0.12 TC(MIN.) = 5.12 LONGEST FLOWPATH FROM NODE 410.00 TO NODE 403.00 = 188.00 FEET. **************#*#***************************************#*#***************** FLOW PROCESS FROM NODE 403.00 TO NODE 403.00 IS CODE = 1 ------------------------------------------------------------------------------ »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.12 RAINFALL INTENSITY(INCH/HR) = 3.23 TOTAL STREAM AREA(ACRES) = 0.37 PEAK FLOW RATE(CFS) AT CONFLUENCE - 1.08 ** CONFLUENCE DATA ** 8 STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 2.08 7.44 2.701 0.80 2 1.08 5.12 3.234 0.37 *********************************WARNING********************************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 2.51 5.12 3.234 2 2.98 7.44 2.701 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 2.98 Tc(MIN.) = 7.44 TOTAL AREA(ACRES) = 1.2 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 403.00 = 529.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 404.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1260.10 DOWNSTREAM(FEET) = 1258.90 FLOW LENGTH(FEET) = 215.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.06 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.98 PIPE TRAVEL TIME(MIN.) = 0.88 TC(MIN.) = 8.32 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 404.00 = 744.00 FEET. FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE = i ----------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.32 RAINFALL INTENSITY(INCH/HR) = 2.56 TOTAL STREAM AREA(ACRES) = 1.17 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.98 **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 406.00 IS CODE = 21 �r ------------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[ (LENGTH**3)/(ELEVATION CHANGE) ]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 159.00 UPSTREAM ELEVATION(FEET) = 1267.90 9 DOWNSTREAM ELEVATION(FEET) = 1265.00 ELEVATION DIFFERENCE(FEET) = 2.90 TC = 0.303*[( 159.00**3)/( 2.90)]**.2 = 5.128 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.231 USER-SPECIFIED RUNOFF COEFFICIENT = .8891 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) = 2.18 TOTAL AREA(ACRES) = 0.76 TOTAL RUNOFF(CFS) = 2.18 **************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 404.00 IS CODE = 31 ----------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1259.80 DOWNSTREAM(FEET) = 1258.90 FLOW LENGTH(FEET) = 24.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.38 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.18 PIPE TRAVEL TIME(MIN.) = 0.05 TC(MIN.) = 5.18 LONGEST FLOWPATH FROM NODE 405.00 TO NODE 404.00 183.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE = 1 -------------------..-----------------__-------.._---_------------------------ »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ------------------------------------------------------------------------------ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.18 RAINFALL INTENSITY(INCH/HR) = 3.21 TOTAL STREAM AREA(ACRES) = 0.76 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.18 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 2.98 8.32 2.559 1.17 2 2.18 5.18 3.215 0.76 *********************************WARNING********************************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 4.04 5.18 3.215 2 4.72 8.32 2.559 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4.72 TC(MIN.) = 8.32 TOTAL AREA(ACRES) = 1.9 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 404.00 = 744.00 FEET. 10 FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE = 81 0_1 ---------------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.559 USER-SPECIFIED RUNOFF COEFFICIENT = .8734 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.94 SUBAREA RUNOFF(CFS) = 2.10 TOTAL AREA(ACRES) = 2.9 TOTAL RUNOFF(CFS) = 6.82 TC(MIN.) = 8.32 FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE = 81 lb ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.559 USER-SPECIFIED RUNOFF COEFFICIENT = .8734 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.15 SUBAREA RUNOFF(CFS) = 0.34 TOTAL AREA(ACRES) = 3.0 TOTAL RUNOFF(CFS) = 7.16 TC(MIN.) = 6.32 **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 304.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1258.90 DOWNSTREAM(FEET) = 1256.00 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.11 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.16 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 8.38 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 304.00 = 784.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 11 ---------------------------------------------------------------------------- »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 7.16 8.38 2.552 3.02 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 304.00 = 784.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 237.69 16.53 1.840 197.03 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 304.00 = 764.00 FEET. *********************************WARNING********************************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. 11 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 127.56 8.38 2.552 2 242.85 16.53 1.840 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 242.85 TC(MIN.) = 16.53 TOTAL AREA(ACRES) = 200.1 **#************#*##*#*******************##*######*****#***************#**##* FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 31 ----------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1256.00 DOWNSTREAM(FEET) = 1250.00 FLOW LENGTH(FEET) = 52.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 37.23 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 242.85 PIPE TRAVEL TIME(MIN.) = 0.02 TC(MIN.) = 16.56 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 305.00 = 836.00 FEET. FLOW PROCESS FROM NODE 305.00 TO NODE 305.00 IS CODE = 81 D` ------------------------------------------------------------------------ - »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.839 USER-SPECIFIED RUNOFF COEFFICIENT = .5733 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 0.52 SUBAREA RUNOFF(CFS) = 0.55 TOTAL AREA(ACRES) = 200.6 TOTAL RUNOFF(CFS) = 243.40 TC(MIN.) = 16.56 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 200.6 TC(MIN.) = 16.56 PEAK FLOW RATE(CFS) = 243.40 ---------------------- ------------ END OF RATIONAL METHOD ANALYSIS 12 **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 ************************** DESCRIPTION OF STUDY ************************** * MISSION TRAIL APARTMENT PROJECT * ON-SITE 100-YEAR INTERIM HYDROLOGY * BY KAM 051818 ************************************************************************** FILE NAME: MTAP100.DAT TIME/DATE OF STUDY: 10:19 05/14/2018 ----------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ----------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) - 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.320 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.980 100--YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.540 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4809628 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4792280 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.500 SLOPE OF INTENSITY DURATION CURVE = 0.4792 RCFC&WCD HYDROLOGY MANUAL "C"--VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 7 ----------------------------------------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 15.60 RAIN INTENSITY(INCH/HOUR) = 2.86 1 TOTAL AREA(ACRES) = 0.00 TOTAL RUNOFF(CFS) = 205.00 FLOW PROCESS FROM NODE 115.00 TO NODE 101.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1265.40 DOWNSTREAM(FEET) = 1261.00 FLOW LENGTH(FEET) = 226.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 51.0 INCH PIPE IS 37.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.30 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 205.00 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 15.81 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 101.00 = 226.00 FEET. FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 1 _---------------------------------------------.._---------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.81 RAINFALL INTENSITY(INCH/HR) = 2.84 TOTAL STREAM AREA(ACRES) = 0.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 205.00 FLOW PROCESS FROM NODE 116.00 TO NODE 116.00 IS CODE = 7 ------------------------------------------------------------------------------ »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 16.60 RAIN INTENSITY(INCH/HOUR) = 2.78 TOTAL AREA(ACRES) = 104.00 TOTAL RUNOFF(CFS) = 114.50 FLOW PROCESS FROM NODE 116.00 TO NODE 101.00 IS CODE = 31 ----------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER--ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1262.40 DOWNSTREAM(FEET) = 1260.00 FLOW LENGTH(FEET) = 28.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 27.18 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 114.50 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 16.62 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 101.00 = 28.00 FEET. FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 1 ------------------------------------------------------------------------------ »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.62 RAINFALL INTENSITY(INCH/HR) = 2.78 2 TOTAL STREAM AREA(ACRES) = 104.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 114.50 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 205.00 15.81 2.843 0.00 2 114.50 16.62 2.775 104.00 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 313.91 15.81 2.843 2 314.64 16.62 2.775 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 313.91 Tc(MIN.) = 15.81 TOTAL AREA(ACRES) = 104.0 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 101.00 = 226.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 31 ------------------------------------------------------------------------------ »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1260.00 DOWNSTREAM(FEET) = 1259.30 FLOW LENGTH(FEET) = 58.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 63.0 INCH PIPE IS 51.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.73 ESTIMATED PIPE DIAMETER(INCH) = 63.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 313.91 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 15.86 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 102.00 = 284.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 1 ---------------_--------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.86 RAINFALL INTENSITY(INCH/HR) = 2.84 TOTAL STREAM AREA(ACRES) = 104.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 313.91 FLOW PROCESS FROM NODE 100.00 TO NODE 100.00 IS CODE 7 -----------------------_--------------------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 16.60 RAIN INTENSITY(INCH/HOUR) = 2.78 3 TOTAL AREA(ACRES) = 92.00 TOTAL RUNOFF(CFS) = 99.60 **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 102.00 IS CODE = 31 -------------------_--_-_------------------------------------------------------ »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1261.00 DOWNSTREAM(FEET) = 1259.30 FLOW LENGTH(FEET) = 59.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.67 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 99.60 PIPE TRAVEL TIME(MIN.) = 0.06 TC(MIN.) = 16.66 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 102.00 = 87.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPEN➢ENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.66 RAINFALL INTENSITY(INCH/HR) = 2.77 TOTAL STREAM AREA(ACRES) = 92.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 99.60 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 313.91 15.86 2.838 104.00 2 99.60 16.66 2.772 92.00 *********************************WARNING********************************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 408.77 15.86 2.838 2 406.27 16.66 2.772 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 408.77 Tc(MIN.) = 15.86 TOTAL AREA(ACRES) = 196.0 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 102.00 = 284.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 301.00 IS CODE = 31 ------------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1259.30 DOWNSTREAM(FEET) = 1258.30 4 FLOW LENGTH(FEET) = 67.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 69.0 INCH PIPE IS 51.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.64 ESTIMATED PIPE DIAMETER(INCH) = 69.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 408.77 PIPE TRAVEL TIME(MIN.) = 0.06 TC(MIN.) = 15.92 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 301.00 = 351.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 301.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.92 RAINFALL INTENSITY(INCH/HR) = 2.83 TOTAL STREAM AREA(ACRES) = 196.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 408.77 FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 21 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[ (LENGTH**3)/(ELEVATION CHANGE) ]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 170.00 UPSTREAM ELEVATION(FEET) = 1271.17 DOWNSTREAM ELEVATION(FEET) = 1268.90 i ELEVATION DIFFERENCE(FEET) = 2.27 TC = 0.303*[ ( 170.00**3)/( 2.27) ]**.2 = 5.606 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.672 USER-SPECIFIED RUNOFF COEFFICIENT = .8922 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) = 1.33 TOTAL AREA(ACRES) = 0.32 TOTAL RUNOFF(CFS) = 1.33 **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = 81 -------------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.672 USER-SPECIFIED RUNOFF COEFFICIENT = .8844 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.71 SUBAREA RUNOFF(CFS) = 2.93 TOTAL AREA(ACRES) = 1.0 TOTAL RUNOFF(CFS) = 4.27 TC(MIN.) = 5.61 **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 301.00 IS CODE = 31 ---------------------------------------------__------------------------------ »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1261.90 DOWNSTREAM(FEET) = 1258.30 FLOW LENGTH(FEET) = 56.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.84 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 5 PIPE-FLOW(CFS) = 4.27 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 5.69 LONGEST FLOWPATH FROM NODE 302.00 TO NODE 301.00 = 226.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 301.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.69 RAINFALL INTENSITY(INCH/HR) = 4.64 TOTAL STREAM AREA(ACRES) = 1.03 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.27 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 408.77 15.92 2.833 196.00 2 4.27 5.69 4.638 1.03 *********************************WARNING********************************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 150.41 5.69 4.638 2 411.38 15.92 2.833 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 411.38 TC(MIN.) = 15.92 TOTAL AREA(ACRES) = 197.0 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 301.00 = 351.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 304.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1256.30 DOWNSTREAM(FEET) = 1256.00 FLOW LENGTH(FEET) = 413.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 81.0 INCH PIPE IS 64.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.43 ESTIMATED PIPE DIAMETER(INCH) = 81.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 411.38 PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 16.43 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 304.00 764.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 10 ---------------------------------------------------------------------------- »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 400.00 TO NODE 401.00 IS CODE = 21 -------------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE) ]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 260.00 UPSTREAM ELEVATION(FEET) = 1270.30 DOWNSTREAM ELEVATION(FEET) = 1265.30 ELEVATION DIFFERENCE(FEET) = 5.00 TC = 0.303*[( 260.00**3)/( 5.00) ]**.2 = 6.177 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.459 USER-SPECIFIED RUNOFF COEFFICIENT = .8918 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) = 2.51 TOTAL AREA(ACRES) = 0.63 TOTAL RUNOFF(CFS) = 2.51 **************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 31 ----------------------------------------_--------_--_---------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1261.50 DOWNSTREAM(FEET) = 1261.20 FLOW LENGTH(FEET) = 57.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.79 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.51 PIPE TRAVEL TIME(MIN.) = 0.25 TC(MIN.) = 6.43 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 402.00 = 317.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 402.00 IS CODE = 81 ----------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.375 USER-SPECIFIED RUNOFF COEFFICIENT = .8834 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.17 SUBAREA RUNOFF(CFS) 0.66 TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 3.16 TC(MIN.) = 6.43 **************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 31 ----------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ---------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1261.20 DOWNSTREAM(FEET) = 1260.10 FLOW LENGTH(FEET) = 212.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.01 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.16 PIPE TRAVEL TIME(MIN.) = 0.88 TC(MIN.) = 7.31 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 403.00 = 529.00 FEET. 7 **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 403.00 IS CODE = 1 ----------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.31 RAINFALL INTENSITY(INCH/HR) = 4.11 TOTAL STREAM AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.16 FLOW PROCESS FROM NODE 410.00 TO NODE 411.00 IS CODE = 21 ------------------------------------------------------------------------------ »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE) ]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 150.00 UPSTREAM ELEVATION(FEET) = 1269.55 DOWNSTREAM ELEVATION(FEET) = 1266.40 ELEVATION DIFFERENCE(FEET) = 3.15 TC = 0.303*( ( 150.00**3)/( 3.15) ]**.2 = 4.871 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.935 USER-SPECIFIED RUNOFF COEFFICIENT = .8926 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) = 1.63 TOTAL AREA(ACRES) = 0.37 TOTAL RUNOFF(CFS) = 1.63 **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 403.00 IS CODE = 31 ----------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1261.20 DOWNSTREAM(FEET) = 1260.10 FLOW LENGTH(FEET) = 38.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.17 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE--FLOW(CFS) = 1.63 PIPE TRAVEL TIME(MIN.) = 0.10 TC(MIN.) = 5.10 LONGEST FLOWPATH FROM NODE 410.00 TO NODE 403.00 = 188.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 403.00 IS CODE = 1 ------------------------------------------------------------------------------ »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.10 RAINFALL INTENSITY(INCH/HR) = 4.89 TOTAL STREAM AREA(ACRES) = 0.37 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.63 ** CONFLUENCE DATA ** 8 STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.16 7.31 4.114 0.80 2 1.63 5.10 4.887 0.37 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 3.84 5.10 4.887 2 4.53 7.31 4.114 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4.53 TC(MIN.) = 7.31 TOTAL AREA(ACRES) = 1.2 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 403.00 = 529.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 404.00 IS CODE = 31 ----------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1260.10 DOWNSTREAM(FEET) = 1258.90 FLOW LENGTH(FEET) - 215.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.51 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.53 PIPE TRAVEL TIME(MIN.) = 0.79 Tc(MIN.) = 8.10 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 404.00 = 744.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE = 1 ------------------------------------------------------------------------------ »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.10 RAINFALL INTENSITY(INCH/HR) = 3.92 TOTAL STREAM AREA(ACRES) = 1.17 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.53 **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 406.00 IS CODE = 21 ------------------------------------------------------------------------------ »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[ (LENGTH**3)/(ELEVATION CHANGE) ]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 159.00 UPSTREAM ELEVATION(FEET) = 1267.90 9 DOWNSTREAM ELEVATION(FEET) = 1265.00 ELEVATION DIFFERENCE(FEET) = 2.90 TC = 0.303*[( 159.00**3)/( 2.90)]**.2 = 5.128 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.875 USER--SPECIFIED RUNOFF COEFFICIENT = .8925 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) = 3.31 TOTAL AREA(ACRES) = 0.76 TOTAL RUNOFF(CFS) = 3.31 **************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 404.00 IS CODE = 31 -----------------------------_----------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON--PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1259.80 DOWNSTREAM(FEET) = 1258.90 FLOW LENGTH(FEET) = 24.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.32 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.31 PIPE TRAVEL TIME(MIN.) = 0.05 TC(MIN.) = 5.18 LONGEST FLOWPATH FROM NODE 405.00 TO NODE 404.00 = 183.00 FEET. FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE 1 ------------------------------------------------------------------------------ »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.18 RAINFALL INTENSITY(INCH/HR) = 4.85 TOTAL STREAM AREA(ACRES) = 0.76 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.31 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.53 8.10 3.916 1.17 2 3.31 5.18 4.854 0.76 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 6.20 5.18 4.854 2 7.20 8.10 3.916 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 7.20 Tc(MIN.) = 8.10 TOTAL AREA(ACRES) = 1.9 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 404.00 = 744.00 FEET. 10 **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE = 81 ------------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.916 USER-SPECIFIED RUNOFF COEFFICIENT = .8817 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.94 SUBAREA RUNOFF(CFS) = 3.24 TOTAL AREA(ACRES) = 2.9 TOTAL RUNOFF(CFS) = 10.45 TC(MIN.) = 8.10 FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE - 81 -------------------------------__--------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.916 USER-SPECIFIED RUNOFF COEFFICIENT = .8817 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.15 SUBAREA RUNOFF(CFS) = 0.52 TOTAL AREA(ACRES) = 3.0 TOTAL RUNOFF(CFS) = 10.97 TC(MIN.) = 8.10 FLOW PROCESS FROM NODE 404.00 TO NODE 304.00 IS CODE = 31 ----------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< i ELEVATION DATA: UPSTREAM(FEET) = 1258.90 DOWNSTREAM(FEET) = 1256.00 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.71 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.97 PIPE TRAVEL TIME(MIN.) = 0.05 TC(MIN.) = 8.15 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 304.00 = 784.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 11 ---------------------------------------------------------------------------- »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 10.97 8.15 3.905 3.02 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 304.00 = 784.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 411.38 16.43 2.790 197.03 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 304.00 = 764.00 FEET. *********************************WARNING********************************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE_ THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. 11 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 214.94 8.15 3.905 2 419.21 16.43 2.790 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 419.21 TC(MIN.) = 16.43 TOTAL AREA(ACRES) = 200.1 FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 31 ------------------------------------------------------------------------------ »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1256.00 DOWNSTREAM(FEET) = 1250.00 FLOW LENGTH(FEET) = 52.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 48.0 INCH PIPE IS 35.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 42.71 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 419.21 PIPE TRAVEL TIME(MIN.) = 0.02 TC(MIN.) = 16.45 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 305.00 = 836.00 FEET. ***********************************}**************************************** FLOW PROCESS FROM NODE 305.00 TO NODE 305.00 IS CODE = 81 ----------------------------------__----------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.788 USER-SPECIFIED RUNOFF COEFFICIENT = .6542 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 0.52 SUBAREA RUNOFF(CFS) = 0.95 TOTAL AREA(ACRES) = 200.6 TOTAL RUNOFF(CFS) = 420.16 TC(MIN.) = 16.45 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 200.6 TC(MIN.) = 16.45 PEAK FLOW RATE(CFS) = 420.16 END OF RATIONAL METHOD ANALYSIS 12 N', CB#1 (W=23.6 1271.4 FL ' \ I 1265.4 INV 11 I 1 I / Q100=205.0 CFS � Tc=15.6 MIN At=188.5 AC 1 1 I , I \ \ `\v CITY BOUN ARY HAKE ELSINORE WILDOMAR \ I I I � D / 0.71 02 FL HIP GB�I #� (W-26') 1262.4 INV /-' CB #7 2 Q10¢-11 CFS 11 1261.9 FL 101 1260.0 INV 0=lyo.6 MI CFS /"- 1261.9 INV 10=158.1 C Tc=1��66.6 MIN QCB10=0.9 CFS`- Q 00=313.9 CFS At=1 4 AC QCB1OO=1.3 CFS',., c 15.8 MIN OCbNF10=2.8 CFS\ - \ /.' QCONF100=4.3 CFS RCWCD&WCD FACILITY / 48" RCMP LAT f,-3" LAT -1" PRIVATE 8 CP"A , 1270.58) I' \ /'' / ■■ ---- I 1 " R I 1259.3 INV ' CL/FS EX CB (W=21•) Q10=236.0 C I L 3• _ 1261.5 INV \ Q10-23 CFS = -------- - ------ - / RCWCD&WCD FACILITY,- - a -,,,c _ - - - p100=408.8 CFS 78" RZDINE A z Tc=15.9 MIN Q1006.6 MI CFS L =6 c=16.6 MIN / / o IG�PbINT Q70=8 7 C * a o *FROM OFF-SITE HYDROLOGY NODE 116 / gq100= 9.6 CFS w o - R D&WCD F I ITY P Tc=16. MIN p 010=116.9 CFS AND Q100=214.1 CFS / I '°48" R T •• 2" `� 7027 � At=92 qC a<n TOTAL PONDING AT INTERSECTION RCWC &WCD FACILITY o CB#2 REMOVES 010=32.9 CFS,0100=114.5 CFS --� - 30" P LAT "A-2A" W J I LEAVING 010=81.7 CFS, 0100=99.6 CFS o I COMBINED FLOW BETWEEN EX CB & CB#3 / ❑ ❑ I CB 3 (W-101) I � I I � E,7ZZ � I ­M � I I ❑ � 7 ❑ �i� 0'� I CITY BOU ARY El A 100=�4 1 C 1 IN � 0- c HAKE EL ORE DO MAR I E"M LINE "B".a I I I c=16. M • I r IVATE 18" RCP -I o I I M WATERSHED BOUNDARY > FF=1270.04 FF=1269.48 I I II SUB-AREA BOUNDARY p IQ7 0=3.2 CFS PAD=1268.79 � PAD=1268.23 0 � � � I --- BOWLINE AND DIRECTION OF FLOW T -1. 12578.9 IN Q10= V e I e I I I TVA 8" RC I .2 CFS 40 0.15 0.17 � I SUBAREA LABEL 41 0100 11.0 CFS ❑ ❑ I 1 AS ti ❑ ❑ ❑ I I 0.3 AREA(ACRES) 1255.5 INV 2 FL7 1268.57 I 0 12"X NODE NUMBER Q10=243.4 C 2 CFS 0100 3.8 CFS Q100=420.2 C -3.3 CFS I 1269.55 I I / Tc=16.5 MIN OI�OC� 47 FL HP II I p10 f0-YEAR PEAK FLOW IN CFS Atot=200.6 AC I 1260.1 INV I o 1261. I I Q1Do f00-YEAR PEAK ROW IN CFS 0.76 Z Q70=3.0 CFS w LINE "B" Q10=2.1 S 40 WS 100 100-YEAR PEAK ROW WATER SURFACE ELEVATION \ o Q700=4.5 CFS ? v p100=3.2 I QCONF f00-YEAR CONFLUENCE PEAK ROW IN CFS PRIVATE 18" - I is L =215' - L =212 o_ - - TC TIME OF CONCENTRATION(f00-YEAR STORM)IN MIN a Tc=7.3 MIN 0. o Tc=7.3 MIN I ovERFLow 2 - - - - _ - - - � � � MIN MINUTES i L 4O o 1 < CFS CUBIC FEET PER SECOND _ =94.4 CFS _ = Amax=55.e S sue. I I EG EXISTING GRADE ELEVATION FG FINISH GRADE ELEVATION / MAX WATER SURFACE IN BASIN 1256.92 ION] I PRIVATE 18" RCP 0maz=n FS I : I i I I FS FINISH SURFACE ELEVATION INV. INVERT OF PIPE ­�==71 L=870' LENGTH OF ROWPAIH IN FEET Lp LENGTH OF PIPE IN FEET �❑ I I I Lc LENGTH OF CHANNEL IN FEET - I I PROPQ ED WEIR LOCATION 126 4 FL CB #4 ELEV 1255.5 47 1 1. NV 40 1265.25 L I I I Q10=1.1 CFS 1261.5 V Q100=1.6 CF Q10=1.7 CFS C Q100=2. FS I I I I GRAPHIC SCALE Lo I II U 125 45 I I I ^ I 4 I (IN FEET I N 1 inch= 25 It CITY OF LAKE ELSINORE W I L SI P N M 1 I A M 1 I MISSION TRAIL APARTMENTS SHEET C00PRAr O RATI N r: sas-s7-aoso � � TF�IBUTY DRAINAGE AREA of 1 SUITE 100 F:949-61-0091 ONI SITE HYDROLOGY STUDY IRVINE, CA 92606 DEVELOPED INTERIM CONDITION FILE N0. EXISTING CONDITION RATIONAL METHOD HYDROLOGY PRE-DEVELOPMENT CONDITION COMBINED OFF-SITE AND ON-SITE FLOWS RATIONAL METHOD CALCULATIONS AND HYDROLOGY MAP **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 ************************** DESCRIPTION OF STUDY ************************** * MISSION TRAIL APARTMENTS * EXISTING CONDITION HYDROLOGY * BY KAM 051818 ************************************************************************** FILE NAME: EXMT100.DAT TIME/DATE OF STUDY: 10:14 05/16/2018 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.320 10--YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.980 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.540 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4809628 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4792280 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.500 SLOPE OF INTENSITY DURATION CURVE = 0.4792 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET--SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) --- ----- --------- ----------------- ------ ----- ------ ----- ------- --- ----- --------- ----------------- ------ ------ ------ ----- ------- 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 163.00 TO NODE 163.00 IS CODE = 7 ----------------------------------------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ------------------------------------ -------------------------------------- USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 13.40 RAIN INTENSITY(INCH/HOUR) = 3.08 TOTAL AREA(ACRES) = 98.10 TOTAL RUNOFF(CFS) = 228.50 **************************************************************************** FLOW PROCESS FROM NODE 163.00 TO NODE 112.00 IS CODE = 61 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< UPSTREAM ELEVATION(FEET) = 1280.90 DOWNSTREAM ELEVATION(FEET) = 1279.80 STREET LENGTH(FEET) = 326.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 229.36 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.20 HALFSTREET FLOOD WIDTH(FEET) = 76.44 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.37 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 4.03 STREET FLOW TRAVEL TIME(MIN.) = 1.61 TC(MIN_) = 15.01 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.914 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8762 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 0.67 SUBAREA RUNOFF(CFS) = 1.71 TOTAL AREA(ACRES) = 98.8 PEAK FLOW RATE(CFS) = 230.21 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 1.20 HALFSTREET FLOOD WIDTH(FEET) = 76.50 FLOW VELOCITY(FEET/SEC.) = 3.37 DEPTH*VELOCITY(FT*FT/SEC.) = 4.04 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 112.00 = 326.00 FEET. FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 7 --------------------___---_----__----------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 15.00 RAIN INTENSITY(INCH/HOUR) = 2.91 TOTAL AREA(ACRES) = 98.80 TOTAL RUNOFF(CFS) = 214.20 **************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 61 ------------------------------------------------------------------------------ »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< UPSTREAM ELEVATION(FEET) = 1279.80 DOWNSTREAM ELEVATION(FEET) = 1277.50 STREET LENGTH(FEET) = 321.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) - 45.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) - 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 214.77 ***STREET FLOW SPLITS OVER STREET-CROWN*** FULL DEPTH(FEET) = 1.16 FLOOD WIDTH(FEET) = 74.58 FULL HALF-STREET VELOCITY(FEET/SEC.) = 4.72 SPLIT DEPTH(FEET) = 0.92 SPLIT FLOOD WIDTH(FEET) = 50.93 SPLIT FLOW(CFS) = 67.38 SPLIT VELOCITY(FEET/SEC.) = 4.11 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.16 HALFSTREET FLOOD WIDTH(FEET) = 74.58 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.72 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 5.47 STREET FLOW TRAVEL TIME(MIN.) = 1.13 Tc(MIN.) = 16.13 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.815 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8756 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) = 1.13 TOTAL AREA(ACRES) = 99.3 PEAK FLOW RATE(CFS) = 215.33 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 1.16 HALFSTREET FLOOD WIDTH(FEET) = 74.58 FLOW VELOCITY(FEET/SEC.) = 4.72 DEPTH*VELOCITY(FT*FT/SEC.) = 5.47 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 113.00 = 647.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 7 ---------------------------------------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 16.10 RAIN INTENSITY(INCH/HOUR) = 2.82 TOTAL AREA(ACRES) = 99.30 TOTAL RUNOFF(CFS) _ 199.20 **************************************************************************** FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 1 -------------------_----------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.10 RAINFALL INTENSITY(INCH/HR) = 2.82 TOTAL STREAM AREA(ACRES) = 99.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 199.20 FLOW PROCESS FROM NODE 128.00 TO NODE 113.00 IS CODE = 7 -----------------------------_----------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< --------------- USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 14.10 RAIN INTENSITY(INCH/HOUR) = 3.00 TOTAL AREA(ACRES) - 86.40 TOTAL RUNOFF(CFS) = 222.00 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.10 RAINFALL INTENSITY(INCH/HR) = 3.00 TOTAL STREAM AREA(ACRES) = 86.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 222.00 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 199.20 16.10 2.818 99.30 2 222.00 14.10 3.003 86.40 *********************************WARNING********************************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 396.45 14.10 3.003 2 407.53 16.10 2.818 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 396.45 Tc(MIN.) = 14.10 TOTAL AREA(ACRES) = 185.7 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 113.00 = 647.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 114.00 TO NODE 115.00 IS CODE = 61 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< UPSTREAM ELEVATION(FEET) = 1277.50 DOWNSTREAM ELEVATION(FEET) = 1271.50 STREET LENGTH(FEET) = 544.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walls Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 399.62 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.18 HALFSTREET FLOOD WIDTH(FEET) = 75.89 AVERAGE FLOW VELOCITY(FEET/SEC.) = 6.02 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 7.13 STREET FLOW TRAVEL TIME(MIN.) = 1.51 Tc(MIN.) = 15.61 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.860 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7794 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 2.84 SUBAREA RUNOFF(CFS) = 6.33 TOTAL AREA(ACRES) = 188.5 PEAK FLOW RATE(CFS) = 402.78 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 1.19 HALFSTREET FLOOD WIDTH(FEET) = 76.01 FLOW VELOCITY(FEET/SEC.) = 6.03 DEPTH*VELOCITY(FT*FT/SEC.) = 7.16 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 115.00 = 1191.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 115.00 TO NODE 116.00 IS CODE = 61 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< --------------------------------===----------------------------------------- UPSTREAM ELEVATION(FEET) = 1271.50 DOWNSTREAM ELEVATION(FEET) = 1269.30 STREET LENGTH(FEET) = 266.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 50.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 45.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 410.88 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.24 HALFSTREET FLOOD WIDTH(FEET) = 78.51 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.51 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 6.82 STREET FLOW TRAVEL TIME(MIN.) = 0.80 TC(MIN.) = 16.41 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.792 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7772 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 7.46 SUBAREA RUNOFF(CFS) = 16.19 TOTAL AREA(ACRES) = 196.0 PEAK FLOW RATE(CFS) = 418.97 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 1.24 HALFSTREET FLOOD WIDTH(FEET) = 78.88 FLOW VELOCITY(FEET/SEC.) = 5.54 DEPTH*VELOCITY(FT*FT/SEC.) = 6.89 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 116.00 = 1457.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 116.00 TO NODE 117.00 IS CODE = 51 ---------------------------------------------------------------------------- »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1262.00 DOWNSTREAM(FEET) = 1260.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 214.00 CHANNEL SLOPE = 0.0093 CHANNEL BASE(FEET) = 35.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 7.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.748 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7747 SOIL CLASSIFICATION IS "D" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 421.45 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.40 AVERAGE FLOW DEPTH(FEET) = 1.71 TRAVEL TIME(MIN.) = 0.56 Tc(MIN.) = 16.97 SUBAREA AREA(ACRES) = 2.33 SUBAREA RUNOFF(CFS) = 4.96 TOTAL AREA(ACRES) = 198.3 PEAK FLOW RATE(CFS) = 423.93 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 1.72 FLOW VELOCITY(FEET/SEC.) = 6.41 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 117.00 = 1671.00 FEET. FLOW PROCESS FROM NODE 117.00 TO NODE 118.00 IS CODE = 52 ---------------------.._----------------------------------------------------- »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< ---------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1260.00 DOWNSTREAM(FEET) = 1254.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 500.00 CHANNEL SLOPE = 0.0104 CHANNEL FLOW THRU SUBAREA(CFS) = 423.93 FLOW VELOCITY(FEET/SEC) = 7.58 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.10 TC(MIN.) = 18.07 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 118.00 = 2171.00 FEET. FLOW PROCESS FROM NODE 118.00 TO NODE 118.00 IS CODE = 81 ----------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.666 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7714 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 2.34 SUBAREA RUNOFF(CFS) = 4.81 TOTAL AREA(ACRES) = 200.7 TOTAL RUNOFF(CFS) = 428.74 TC(MIN.) = 18.07 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 200.7 TC(MIN.) = 18.07 PEAK FLOW RATE(CFS) = 428.74 END OF RATIONAL METHOD ANALYSIS w I U= I DL.I l r DRAINAGE PLAN S-1 / Q100=248.5 CF Q10=1 1 163� 0 FLOW COLLECTED INTO BASIN 0100=248.5 CFSO" Q=20.0 CFS Tc=13.4 MIN EX CB#38 Q I O(BYPASS)=132.1 CF r �t=98.1 AC. \ F L. /Rc0 IN013 4 M 28.5 C 1279.8 Q10=133.2 CFS Al rn ITY BOUNDARY MpR 1102Q100=230.2 CFS 112 FLOW COLLECTED O.fi7 INTO BASIN Q= 6.0 CFS Q10�BYPASS)=117.2 CFS Q100(BYPASS)=214.2 CFS 'EX CB#1 1 Tc=15 0 MIN -FLOW-BY '� FROM WILDOMAR I Atot=98.8 AC. 1277.5 FL. 446 DRAINAGE PLAN S-1 Q10=117.9 CF �� 1 =1 . i28 13 Q100=215.3 CFS Q100=222.0 CFS FLOW COLLECTED, Tc=14.1 MIN INTO BASIN Mtot=86.4 AC- Q=16.1 CFS Q10(BYPASS)=101.8 CFS 0100(BYPASS)=199.2 CFS CONFLUENCED FLOWS c=16.1 MIN Q10=225.1 CFS 114 Atot=99.3 AC. Q100=396.5 CFS LEGEND Tc=14.1 MIN i tot=185.7 AC. WATERSHED BOUNDARY \ +• SUB-AREA BOUNDARY FLOWUN£AND DIRECTION OF FLOW SUBARFA LABEL 0'9 AREA (ACRES) NODE NUMBER ' ' o100 100-YEAR PEAK FLOW IN CFS / \ WS 100 f00-YEAR PEAK FLOW WATER SURFACE ELEVATION 1 2 71.5 FLU ' ' OCONF 100-YEAR CONFLUENCE PEAK FLOW IN CFS 10=229.1 CFS TC TIME OF CONCENTRATON(100-YEAR STORM) IN MIN MIN MINUTES Q100=402.8 CFS CF CUBIC ET PER SECOND ro A LLVATION =l 6 IN , FG FINISH GRADE ELEVATION FS FINISH SURFACE ELEVATION N INV. INVERT OF PIPE L=87O' LENGTH OF FLOWPATH IN FEET Lp LENGTH OF PIP£IN FEE7 Lc LENGTH OF CHANNEL 1N FEET 1262.0 FL. / d1 =116.9 CFS 0100=419.0 CF c=16.4 MI J i6 \\ Ao =196.0A . Q 0 = 2 . L o GRAPHIC SCALE uj J FM q I Q ( � , \ \ 0 L inch = zoo & 2. CITY OF L� AKE ELSINORE A4 �� WILSON MIKAMI \ ----- MISSION TRAIL APARTMENTS sxET \ 100 4 8 C 7•46 \ \� CORPORATION \\>� =1s.1 MI 118 ` o�� 9 CORPORATE PARK T: 949-679-0090 TRIBUTARY DRAINAGE AREA OF l \ \ A of=200.7 A \ SUITE 100 F: 949-679-0091 OFF-SITE HYDROLOGY STUDY IRVINE, CA 92606 AIL£ NO. EXISTING CONDITION PRE-DEVELOPMENT CONDITION ON-SITE FLOWS ONLY RATIONAL METHOD CALCULATIONS AND HYDROLOGY MAP RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 ++++*+++++++++++++++*+*+*+ DESCRIPTION OF STUDY *++*++++****************++ * MISSION TRAIL APARTMENTS * 10-YEAR EXISTING HYDROLOGY * BY KAM 010318 FILE NAME: EXMT.DAT TIME/DATE OF STUDY: 17:42 01/06/2018 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ------------------------------------------------------_----_--------------------- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.320 i 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.980 100--YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.540 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 SLOPE OF 10--YEAR INTENSITY-DURATION CURVE = 0.4809628 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4792280 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 0.990 SLOPE OF INTENSITY DURATION CURVE = 0.4810 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER--DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) --- ----- --------- ----------------- ------ ----- ------ ----- ------- 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 ------------------------------------------------------------------------------ »»>RATIONAL METHOD INITIAL SUBAREA ANALYSES««< ------------ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR COVER TC = K*[ (LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 225.00 UPSTREAM ELEVATION(FEET) = 1272.80 DOWNSTREAM ELEVATION(FEET) = 1262.00 ELEVATION DIFFERENCE(FEET) = 10.80 TC = 0.709*[ ( 225.00**3)/( 10.80) ]**.2 = 11.364 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.203 USER-SPECIFIED RUNOFF COEFFICIENT = .7489 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) = 0.56 TOTAL AREA(ACRES) = 0.34 TOTAL RUNOFF(CFS) = 0.56 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 52 ---------------------------------------------------------------------------- »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< >>>TRAVELTIME THRU SUBAREA««< ELEVATION DATA: UPSTREAM(FEET) = 1262.00 DOWNSTREAM(FEET) = 1254.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 616.00 CHANNEL SLOPE = 0.0117 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 0.56 FLOW VELOCITY(FEET/SEC) = 1.62 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 6.33 TC(MIN.) = 17.69 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 841.00 FEET. FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 81 ----------------------------------------------_----_---------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.781 USER-SPECIFIED RUNOFF COEFFICIENT = .7202 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 4.60 SUBAREA RUNOFF(CFS) = 5.90 TOTAL AREA(ACRES) = 4.9 TOTAL RUNOFF(CFS) = 6.46 TC(MIN.) = 17.69 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 4.9 TC(MIN.) = 17.69 PEAK FLOW RATE(CFS) = 6.46 END OF RATIONAL METHOD ANALYSIS RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 ****+*++++*+***+**+*+*+**+ DESCRIPTION OF STUDY ++++++++++*+++++++++++++*+ * MISSION TRAIL APARTMENTS * 100-YEAR EXISTING HYDROLOGY * BY KAM 010318 FILE NAME: EXMT.DAT TIME/DATE OF STUDY: 17:44 01/06/2018 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.320 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.980 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.540 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4809628 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4792280 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.500 SLOPE OF INTENSITY DURATION CURVE = 0.4792 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* #*#*****#******************************************************************* FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSES««< ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR COVER TC = K*[ (LENGTH**3)/(ELEVATION CHANGE) ]**.2 INITIAL SUBAREA FLOW--LENGTH(FEET) = 225.00 UPSTREAM ELEVATION(FEET) = 1272.80 DOWNSTREAM ELEVATION(FEET) = 1262.00 ELEVATION DIFFERENCE(FEET) = 10.80 TC = 0.709*[( 225.00**3)/( 10.80) ]**.2 = 11.364 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.330 USER-SPECIFIED RUNOFF COEFFICIENT = .7940 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) = 0.90 TOTAL AREA(ACRES) = 0.34 TOTAL RUNOFF(CFS) = 0.90 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 52 ----------------------------------------------------------------------_------- »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< ELEVATION DATA: UPSTREAM(FEET) 1262.00 DOWNSTREAM(FEET) = 1254.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 616.00 CHANNEL SLOPE = 0.0117 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 0.90 FLOW VELOCITY(FEET/SEC) = 1.62 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 6.33 Tc(MIN.) = 17.69 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 841.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 81 ------------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< { 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.693 USER-SPECIFIED RUNOFF COEFFICIENT = .7725 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 4.60 SUBAREA RUNOFF(CFS) = 9.57 TOTAL AREA(ACRES) = 4.9 TOTAL RUNOFF(CFS) = 10.47 TC(MIN.) = 17.69 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 4.9 TC(MIN.) = 17.69 PEAK FLOW RATE(CFS) = 10.47 END OF RATIONAL METHOD ANALYSIS 127 .8 FL 100 .34 OF26 .0 01 y FL / \ 6 P 01 CT ��, i ��\• A �� HO N AR \ I ECIE s n WATERSHED BOUNDARY SUB-AREA BOUNDARY —� FLOWLINE AND DIRECTION OF FLOW SUBAREA LABEL AS �AREA (ACRES) x .6 Q NODE NUMBER 010 10-YEAR PEAK FLOW IN CFS 0100 100-YEAR PEAK FLOW IN CFS WS 100 100-YE41? PEAK FLOW WATER SURFACE ELEVATION OCONF 100-YE4R CONFLUENCE PEAK FLOW IN CFS TC TIME OF CONCENTRATION (100-YEAR STORM) IN MIN MIN MINUTES CFS CUBIC FEET PER SECOND EG EXISTING GRADE ELEVATION FG FINISH GRADE ELEVATION FS FINISH SURFACE ELEVATION INV. INVERT OF PIPE L=870' LENGTH OF FLOWPATH IN FEET p Lp LENGTH OF PIPE IN FEET Lc LENGTH OF CHANNEL IN FEET 1254.8 FL. Q10=6.5 CFS 102 1 Q100=10.5 CFS ` GRAPHIC SCALE Tc=17.7 MI 1 $ b m m Atot=4.9 C IOW I • I l I men- 60 n ll CITY OF LAKE ELSINORE W I L.S O N M I KA N1 I MISSION TRAIL APARTMENTS C a R PO RATI O N 7RB HARP DRAWAOE AREA 1 9 CORPORATE PARK T.949-679-OM SIXTE.100 92608 F.949-679-0091 EXJSIII�NI H VfNVOGYFu AD. POST DEVELOPMENT CONDITION ON-SITE FLOWS ONLY RATIONAL METHOD CALCULATIONS AND HYDROLOGY MAP **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 DESCRIPTION OF STUDY ************************** * MISSION TRAIL APARTMENT PROJECT * ON-SITE 10-YEAR HYDROLOGY UJO VFP-B%TW F � * BY KAM 010418 FILE NAME: ULT100.DAT TIME/DATE OF STUDY: 07:10 01/04/2018 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ----------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) a 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.320 10--YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.980 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.540 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4809628 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4792280 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 0.990 SLOPE OF INTENSITY DURATION CURVE = 0.4810 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 =30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top--of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 21 D1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSES««< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[ (LENGTH**3)/(ELEVATION CHANGE) ]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 170.00 UPSTREAM ELEVATION(FEET) = 1271.17 DOWNSTREAM ELEVATION(FEET) = 1268.90 ELEVATION DIFFERENCE(FEET) = 2.27 TC = 0.303*[( 170.00**3)/( 2.27) ]**.2 = 5.606 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.095 USER-SPECIFIED RUNOFF COEFFICIENT = .8887 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) = 0.88 TOTAL AREA(ACRES) = 0.32 TOTAL RUNOFF(CFS) = 0.88 **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = 81 D� ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ---------------------------------------------------------------------------- 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.095 USER-SPECIFIED RUNOFF COEFFICIENT = .8774 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.71 SUBAREA RUNOFF(CFS) 1.93 TOTAL AREA(ACRES) = 1.0 TOTAL RUNOFF(CFS) = 2.81 TC(MIN.) = 5.61 **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 301.00 IS CODE = 31 --_--------------------------------------_------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER--ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ---------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1261.90 DOWNSTREAM(FEET) = 1258.30 FLOW LENGTH(FEET) = 56.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.60 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.81 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 5.70 LONGEST FLOWPATH FROM NODE 302.00 TO NODE 301.00 = 226.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 304.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1258.30 DOWNSTREAM(FEET) 1256.00 FLOW LENGTH(FEET) = 413.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.00 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.81 PIPE TRAVEL TIME(MIN.) = 1.72 Tc(MIN.) = 7.43 LONGEST FLOWPATH FROM NODE 302.00 TO NODE 304.00 = 639.00 FEET. FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 1 -----------------_--------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.43 RAINFALL INTENSITY(INCH/HR) = 2.70 TOTAL STREAM AREA(ACRES) = 1.03 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.81 FLOW PROCESS FROM NODE 400.00 TO NODE 401.00 IS CODE = 21 P4 ---------------_------------------------------------------------------ __ »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< -------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE) ]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 260.00 UPSTREAM ELEVATION(FEET) = 1270.30 DOWNSTREAM ELEVATION(FEET) = 1265.30 ELEVATION DIFFERENCE(FEET) = 5.00 TC = 0.303*[ ( 260.00**3)/( 5.00) ]**.2 6.177 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.954 USER-SPECIFIED RUNOFF COEFFICIENT = .8882 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) = 1.65 TOTAL AREA(ACRES) = 0.63 TOTAL RUNOFF(CFS) = 1.65 FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 31 ----------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ----------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1259.30 DOWNSTREAM(FEET) = 1257.80 FLOW LENGTH(FEET) = 286.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.37 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.65 PIPE TRAVEL TIME(MIN.) = 1.41 TC(MIN.) = 7.59 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 402.00 = 546.00 FEET. ***+******************+*****+*+*++*++++++*++*++++++++*+**+++++++*+++*+*+++++ FLOW PROCESS FROM NODE 402.00 TO NODE 402.00 IS CODE = 81 p5 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.676 USER-SPECIFIED RUNOFF COEFFICIENT = .8872 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 0.88 TOTAL AREA(ACRES) = 1.0 TOTAL RUNOFF(CFS) = 2.53 TC(MIN.) = 7.59 FLOW PROCESS FROM NODE 402.00 TO NODE 402.00 IS CODE = 81 OV ---------------------------------__--__--------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.676 USER-SPECIFIED RUNOFF COEFFICIENT = .8744 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.32 SUBAREA RUNOFF(CFS) = 0.75 TOTAL AREA(ACRES) = 1.3 TOTAL RUNOFF(CFS) = 3.28 TC(MIN.) = 7.59 FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< --- --------- ----- _____ - _ --------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1257.80 DOWNSTREAM(FEET) = 1256.80 FLOW LENGTH(FEET) = 215.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.89 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.28 PIPE TRAVEL TIME(MIN.) = 0.92 TC(MIN.) = 8.51 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 403.00 = 761.00 FEET. FLOW PROCESS FROM NODE 403.00 TO NODE 403.00 IS CODE = 81 DI ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.532 USER-SPECIFIED RUNOFF COEFFICIENT = .8866 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.76 SUBAREA RUNOFF(CFS) = 1.71 TOTAL AREA(ACRES) = 2.1 TOTAL RUNOFF(CFS) = 4.99 TC(MIN.) = 8.51 FLOW PROCESS FROM NODE 403.00 TO NODE 403.00 IS CODE = 81 p'3 ------------------------------------------------------------------------------ »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< -----===------------------------------ ------------------------------------- ---------------------------------------------------------------------------- 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.532 USER-SPECIFIED RUNOFF COEFFICIENT = .8731 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.94 SUBAREA RUNOFF(CFS) = 2.08 TOTAL AREA(ACRES) = 3.0 TOTAL RUNOFF(CFS) = 7.06 TC(MIN.) = 8.51 FLOW PROCESS FROM NODE 403.00 TO NODE 304.00 IS CODE = 31 ----------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER--ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ---------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1256.80 DOWNSTREAM(FEET) = 1256.00 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.14 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.06 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) 6.59 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 304.00 = 801.00 FEET. FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 1 ------------------------------------- -------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ---------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.59 RAINFALL INTENSITY(INCH/HR) = 2.52 TOTAL STREAM AREA(ACRES) = 3.02 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.06 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 2.81 7.43 2.704 1.03 2 7.06 8.59 2.520 3.02 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 8.91 7.43 2.704 2 9.68 8.59 2.520 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.68 Tc(MIN.) = 8.59 TOTAL AREA(ACRES) = 4.1 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 304.00 = 801.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 31 ----------------------------------------__-»_----------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1256.00 DOWNSTREAM(FEET) = 1250.00 FLOW LENGTH(FEET) = 52.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.86 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.68 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 8.64 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 305.00 = 853.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 305.00 TO NODE 305.00 IS CODE 81 --------------------------------------_---_-------_------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ------------ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.513 USER-SPECIFIED RUNOFF COEFFICIENT = .7648 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.52 SUBAREA RUNOFF(CFS) = 1.00 TOTAL AREA(ACRES) = 4.6 TOTAL RUNOFF(CFS) = 10.68 TC(MIN.) = 8.64 END OF STUDY SUMMARY: v S F_ Fob V N� TOTAL AREA(ACRES) _ � 4.6 TC(MIN.) = 8.64 PEAK FLOW RATE(CFS) = 1�-68 O'rDp"AfI- -------------------- END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 ************************** DESCRIPTION OF STUDY ************************** * MISSION TRAIL APARTMENT PROJECT * ON-SITE 100-YEAR HYDROLOGY (Ve Olaf-sue F"mos) * BY KAM 010418 ************************************************************************** FILE NAME: ULT100.DAT TIME/DATE OF STUDY: 07:04 01/04/2018 --------_--_-_--_----__---__------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --------------------------..___-.._------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.320 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.980 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.540 100--YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4809628 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE 0.4792280 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.500 SLOPE OF INTENSITY DURATION CURVE = 0.4792 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 21 (11 -----------------------__.-------------------------------------------------YY-��----- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSES««< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL 1 TC = K*[(LENGTH**3)/(ELEVATION CHANGE) ]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 170.00 UPSTREAM ELEVATION(FEET) = 1271.17 DOWNSTREAM ELEVATION(FEET) = 1268.90 ELEVATION DIFFERENCE(FEET) = 2.27 TC = 0.303*[ ( 170.00**3)/( 2.27)]**.2 = 5.606 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.672 USER-SPECIFIED RUNOFF COEFFICIENT = .8922 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) = 1.33 TOTAL AREA(ACRES) = 0.32 TOTAL RUNOFF(CFS) 1.33 **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = 81 v7 ----------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.672 USER-SPECIFIED RUNOFF COEFFICIENT = .8844 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.71 SUBAREA RUNOFF(CFS) = 2.93 TOTAL AREA(ACRES) = 1.0 TOTAL RUNOFF(CFS) = 4.27 TC(MIN.) = 5.61 **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 301.00 IS CODE = 31 ----------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< -------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 1261.90 DOWNSTREAM(FEET) = 1258.30 FLOW LENGTH(FEET) = 56.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.84 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 4.27 PIPE TRAVEL TIME(MIN.) = 0.09 TC(MIN.) = 5.69 LONGEST FLOWPATH FROM NODE 302.00 TO NODE 301.00 = 226.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 304.00 IS CODE = 31 ------------------------------------------------------------------------------ »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1258.30 DOWNSTREAM(FEET) = 1256.00 FLOW LENGTH(FEET) = 413.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.45 ESTIMATED PIPE DIAMETER(INCH) = 16.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.27 PIPE TRAVEL TIME(MIN.) = 1.55 TC(MIN.) = 7.24 LONGEST FLOWPATH FROM NODE 302.00 TO NODE 304.00 = 639.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 1 -------------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: 2 TIME OF CONCENTRATION(MIN.) = 7.24 RAINFALL INTENSITY(INCH/HR) = 4.13 TOTAL STREAM AREA(ACRES) = 1.03 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.27 **************************************************************************** FLOW PROCESS FROM NODE 400.00 TO NODE 401.00 IS CODE = 21 py ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE) ]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 260.00 UPSTREAM ELEVATION(FEET) = 1270.30 DOWNSTREAM ELEVATION(FEET) = 1265.30 ELEVATION DIFFERENCE(FEET) = 5.00 TC = 0.303*[( 260.00**3)/( 5.00)]**.2 = 6.177 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.459 USER-SPECIFIED RUNOFF COEFFICIENT = .8918 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) 2.51 TOTAL AREA(ACRES) = 0.63 TOTAL RUNOFF(CFS) = 2.51 **************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1259.30 DOWNSTREAM(FEET) = 1257.80 I FLOW LENGTH(FEET) = 286.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.79 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.51 PIPE TRAVEL TIME(MIN.) = 1.26 TC(MIN.) 7.44 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 402.00 = 546.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 402.00 IS CODE = 81 r)5 ------------------------------------_----------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ---------------------------------------------------------------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.080 USER-SPECIFIED RUNOFF COEFFICIENT = .8912 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 1.35 TOTAL AREA(ACRES) = 1.0 TOTAL RUNOFF(CFS) = 3.85 TC(MIN.) = 7.44 **************************************************************************** --FLOW PROCESS FROM NODE 402.00 TO NODE 402.00 IS CODE = 61 ----------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.080 USER-SPECIFIED RUNOFF COEFFICIENT = .6823 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.32 SUBAREA RUNOFF(CFS) = 1.15 TOTAL AREA(ACRES) = 1.3 TOTAL RUNOFF(CFS) = 5.00 TC(MIN.) = 7.44 3 FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1257.80 DOWNSTREAM(FEET) = 1256.80 FLOW LENGTH(FEET) = 215.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.29 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.00 PIPE TRAVEL TIME(MIN.) = 0.83 TC(MIN.) = 8.27 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 403.00 = 761.00 FEET. ******************************************+********************************* FLOW PROCESS FROM NODE 403.00 TO NODE 403.00 IS CODE = 81 D'i ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.877 USER-SPECIFIED RUNOFF COEFFICIENT = .8907 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.76 SUBAREA RUNOFF(CFS) = 2.62 TOTAL AREA(ACRES) 2.1 TOTAL RUNOFF(CFS) = 7.63 TC(MIN.) = 8.27 --FLOW PROCESS FROM NODE 403.00 TO NODE 403.00 IS CODE = 81 ------------------------------------------------------------------ I »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.877 USER-SPECIFIED RUNOFF COEFFICIENT = .8815 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.94 SUBAREA RUNOFF(CFS) = 3.21 TOTAL AREA(ACRES) = 3.0 TOTAL RUNOFF(CFS) = 10.84 TC(MIN.) = 8.27 FLOW PROCESS FROM NODE 403.00 TO NODE 304.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER.-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1256.80 DOWNSTREAM(FEET) = 1256.00 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.99 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.84 PIPE TRAVEL TIME(MIN.) = 0.07 TC(MIN.) = 8.34 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 304.00 = 801.00 FEET. **********************************************************************+***** FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 4 TIME OF CONCENTRATION(MIN.) = 8.34 RAINFALL INTENSITY(INCH/HR) = 3.86 TOTAL STREAM AREA(ACRES) = 3.02 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.84 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.27 7.24 4.133 1.03 2 10.84 8.34 3.861 3.02 *********************************WARNING********************************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 13.67 7.24 4.133 2 14.83 8.34 3.861 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.83 TC(MIN.) = 8.34 TOTAL AREA(ACRES) = 4.1 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 304.00 = 801.00 FEET. FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 31 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 1256.00 DOWNSTREAM(FEET) = 1250.00 FLOW LENGTH(FEET) = 52.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.89 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 14.83 PIPE TRAVEL TIME(MIN.) = 0.05 TC(MIN.) = 8.39 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 305.00 = 853.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 305.00 TO NODE 305.00 IS CODE = 81 ----------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.851 USER-SPECIFIED RUNOFF COEFFICIENT = .8069 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.52 SUBAREA RUNOFF(CFS) = 1.62 TOTAL AREA(ACRES) = 4.6 TOTAL RUNOFF(CFS) = 16.44 TC(MIN.) = 8.39 END OF STUDY SUMMARY: TOTAL AREA(ACRES) - 4.6 TC(MIN.) _ ,$.39 PEAK FLOW RATE(CFS) = 16.44 r~ END OF RATIONAL METHOD ANALYSIS S , • ® s a s 1 Yri�az —� �11► r�.,� � 11 t. �� : ► - - �i Ills , II ■._u�_u_. ., ..IIII rMIA EVA 14,04 Ilk's m ME \ �_` .�,:� ��_i�i'iiii�ui�� liiiiiiii%�� �:�' "�i •- 1 _ •f Im v i Q UNIT HYDROGRAPHS UNIT HYDROGRAPHS ON-SITE FLOWS ONLY (NO OFF-SITE FLOWS INCLUDED) U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 06/07/1B File: MTX2410.out ....-I-- ...-F-hi-.+............... ..........++++++.....++.+++...t-i.i--1-i-.-f-.... ------------------------------------------------------------------------- Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 4002 ---------------------------------------------------------------------------- English (in-lb) Input Units Used English Rainfall Data (Inches) input Values Used English Units used in output format --------------------------------------------------------------------- MISSION TRAIL APARTMENTS 10-YEAR 24-HOUR UNIT HYDROGRAPH PRE DEVELOPMENT CONDITION (NO-OFF SITE FLOW) BY KAM 06051E --------------------------------------------------------------------_ Drainage Area = 4.90(Ac.) = 0.008 Sq. Mi. Drainage Area for Depth-Area Areal Adjustment = 4.90(Ac.) = 0.008 Sq. Mi. USER Entry of lag time in hours Lag time = 0.236 Hr. Lag time = 14.16 Min. 25% of lag time = 3.54 Min. 40% of lag time = 5.66 Min. Unit time = 5.00 Min. Duration of storm = 24 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.) [1] Rainfall(In) [21 Weighting[1*2] 4.90 2.50 12.25 100 YEAR Area rainfall data: Area(Ac.) [l] Rainfall(ln) [2] Weighting[1*2] 4.90 7.00 34.30 STORM EVENT (YEAR) = 10.00 Area Averaged 2-Year Rainfall = 2.500(In) Area Averaged 100-Year Rainfall = 7.000(In) Point rain (area averaged) = 4.351(in) Areal adjustment factor = 100.00 % Adjusted average point rain = 4.351(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 4.900 84.00 0.050 Total Area Entered = 4.90(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC-2 (In/Hr) (Dec.%) (In/Hr) (Dec.) (In/Hr) 84.0 84.0 0.198 0.050 0.189 1.000 0.189 Sum (F) = 0.189 Area averaged mean soil loss (F) (In/Hr) = 0.189 Minimum soil loss rate ( (In/Hr) ) = 0.095 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.860 --------------------------------------------------------------------- U n i t H y d r o g r a p h VALLEY S-Curve ----------------------------------------------------------------------- Unit Hydrograph Data ------------------------------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) --------------------------------------------------------------------- 1 0.083 35.311 3.630 0.179 2 0.167 70.621 14.307 0.707 3 0.250 105.932 23.530 1.162 4 0.333 141.243 19.479 0.962 5 0.417 176.554 10.252 0.506 6 0.500 211.864 5.887 0.291 7 0.583 247.175 4.316 0.213 8 0.667 282.486 3.388 0.167 9 0.750 317.797 2.665 0.132 10 0.833 353.107 2.169 0.107 11 0.917 388.418 1.789 0.088 12 1.000 423.729 1.458 0.072 13 1.083 459.040 1.150 0.057 14 1.167 494.350 1.079 0.053 15 1.250 529.661 0.960 0.047 16 1.333 564.972 0.768 0.038 17 1.417 600.282 0.659 0.033 18 1.500 635.593 0.564 0.028 19 1.583 670.904 0.470 0.023 20 1.667 706.215 0.365 0.018 21 1.750 741.525 0.353 0.017 22 1.833 776.836 0.353 0.017 23 1.917 812.147 0.408 0.020 Sum = 100.000 Sum= 4.938 ------------------------------------------------------------------------- Unit Time Pattern Storm Rain Loss rate(In./Hr) Effective (Hr.) Percent (In/Hr) Max Low (In/Hr) 1 0.08 0.07 0.035 0.336 0.030 0.00 2 0.17 0.07 0.035 0.335 0.030 0.00 3 0.25 0.07 0.035 0.333 0.030 0.00 4 0.33 0.10 0.052 0.332 0.045 0.01 5 0.42 0.10 0.052 0.331 0.045 0.01 6 0.50 0.10 0.052 0.329 0.045 0.01 7 0.58 0.10 0.052 0.328 0.045 0.01 8 0.67 0.10 0.052 0.327 0.045 0.01 9 0.75 0.10 0.052 0.326 0.045 0.01 10 0.83 0.13 0.070 0.324 0.060 0.01 11 0.92 0.13 0.070 0.323 0.060 0.01 12 1.00 0.13 0.070 0.322 0.060 0.01 13 1.08 0.10 0.052 0.320 0.045 0.01 14 1.17 0.10 0.052 0.319 0.045 0.01 15 1.25 0.10 0.052 0.318 0.045 0.01 16 1.33 0.10 0.052 0.317 0.045 0.01 17 1.42 0.10 0.052 0.315 0.045 0.01 18 1.50 0.10 0.052 0.314 0.045 0.01 19 1.58 0.10 0.052 0.313 0.045 0.01 20 1.67 0.10 0.052 0.312 0.045 0.01 21 1.75 0.10 0.052 0.310 0.045 0.01 22 1.83 0.13 0.070 0.309 0.060 0.01 23 1.92 0.13 0.070 0.308 0.060 0.01 24 2.00 0.13 0.070 0.307 0.060 0.01 25 2.08 0.13 0.070 0.305 0.060 0.01 26 2.17 0.13 0.070 0.304 0.060 0.01 27 2.25 0.13 0.070 0.303 0.060 0.01 28 2.33 0.13 0.070 0.302 0.060 0.01 29 2.42 0.13 0.070 0.300 0.060 0.01 30 2.50 0.13 0.070 0.299 0.060 0.01 31 2.58 0.17 0.087 0.298 0.075 0.01 32 2.67 0.17 0.087 0.297 0.075 0.01 33 2.75 0.17 0.087 0.296 0.075 0.01 34 2.83 0.17 0.087 0.294 0.075 0.01 35 2.92 0.17 0.087 0.293 0.075 0.01 36 3.00 0.17 0.087 0.292 0.075 0.01 37 3.08 0.17 0.087 0.291 0.075 0.01 38 3.17 0.17 0.087 0.290 0.075 0.01 39 3.25 0.17 0.087 0.288 0.075 0.01 40 3.33 0.17 0.087 0.287 0.075 0.01 41 3.42 0.17 0.087 0.286 0.075 0.01 42 3.50 0.17 0.087 0.285 0.075 0.01 43 3.58 0.17 0.087 0.284 0.075 0.01 44 3.67 0.17 0.087 0.282 0.075 0.01 45 3.75 0.17 0.087 0.281 0.075 0.01 46 3.83 0.20 0.104 0.280 0.090 0.01 47 3.92 0.20 0.104 0.279 0.090 0.01 46 4.00 0.20 0.104 0.278 0.090 0.01 49 4.08 0.20 0.104 0.276 0.090 0.01 50 4.17 0.20 0.104 0.275 0.090 0.01 51 4.25 0.20 0.104 0.274 0.090 0.01 52 4.33 0.23 0.122 0.273 0.105 0.02 53 4.42 0.23 0.122 0.272 0.105 0.02 54 4.50 0.23 0.122 0.271 0.105 0.02 55 4.58 0.23 0.122 0.269 0.105 0.02 56 4.67 0.23 0.122 0.26E 0.105 0.02 57 4.75 0.23 0.122 0.267 0.105 0.02 58 4.83 0.27 0.139 0.266 0.120 0.02 59 4.92 0.27 0.139 0.265 0.120 0.02 60 5.00 0.27 0.139 0.264 0.120 0.02 61 5.08 0.20 0.104 0.263 0.090 0.01 62 5.17 0.20 0.104 0.261 0.090 0.01 63 5.25 0.20 0.104 0.260 0.090 0.01 64 5.33 0.23 0.122 0.259 0.105 0.02 65 5.42 0.23 0.122 0.258 0.105 0.02 66 5.50 0.23 0.122 0.257 0.105 0.02 67 5.58 0.27 0.139 0.256 0.120 0.02 68 5.67 0.27 0.139 0.255 0.120 0.02 69 5.75 0.27 0.139 0.253 0.120 0.02 70 5.83 0.27 0.139 0.252 0.120 0.02 71 5.92 0.27 0.139 0.251 0.120 0.02 72 6.00 0.27 0.139 0.250 0.120 0.02 73 6.08 0.30 0.157 0.249 0.135 0.02 74 6.17 0.30 0.157 0.248 0.135 0.02 75 6.25 0.30 0.157 0.247 0.135 0.02 76 6.33 0.30 0.157 0.246 0.135 0.02 77 6.42 0.30 0.157 0.245 0.135 0.02 78 6.50 0.30 0.157 0.243 0.135 0.02 79 6.58 0.33 0.174 0.242 0.150 0.02 80 6.67 0.33 0.174 0.241 0.150 0.02 81 6.75 0.33 0.174 0.240 0.150 0.02 82 6.83 0.33 0.174 0.239 0.150 0.02 83 6.92 0.33 0.174 0.238 0.150 0.02 84 7.00 0.33 0.174 0.237 0.150 0.02 85 7.08 0.33 0.174 0.236 0.150 0.02 86 7.17 0.33 0.174 0.235 0.150 0.02 87 7.25 0.33 0.174 0.234 0.150 0.02 88 7.33 0.37 0.191 0.233 0.165 0.03 89 7.42 0.37 0.191 0.232 0.165 0.03 90 7.50 0.37 0.191 0.231 0.165 0.03 91 7.58 0.40 0.209 0.229 0.180 0.03 92 7.67 0.40 0.209 0.228 0.180 0.03 93 7.75 0.40 0.209 0.227 0.180 0.03 94 7.83 0.43 0.226 0.226 0.195 0.03 95 7.92 0.43 0.226 0.225 --- 0.00 96 8.00 0.43 0.226 0.224 --- 0.00 97 B.08 0.50 0.261 0.223 --- 0.04 98 8.17 0.50 0.261 0.222 --- 0.04 99 8.25 0.50 0.261 0.221 --- 0.04 100 8.33 0.50 0.261 0.220 --- 0.04 101 8.42 0.50 0.261 0.219 --- 0.04 102 8.50 0.50 0.261 0.218 --- 0.04 103 8.58 0.53 0.278 0.217 --- 0.06 104 8.67 0.53 0.278 0.216 --- 0.06 105 8.75 0.53 0.278 0.215 --- 0.06 106 8.83 0.57 0.296 0.214 --- 0.08 107 8.92 0.57 0.296 0.213 --- 0.08 108 9.00 0.57 0.296 0.212 --- 0.08 109 9.08 0.63 0.331 0.211 --- 0.12 110 9.17 0.63 0.331 0.210 --- 0.12 111 9.25 0.63 0.331 0.209 --- 0.12 112 9.33 0.67 0.348 0.208 --- 0.14 113 9.42 0.67 0.348 0.207 --- 0.14 114 9.50 0.67 0.348 0.206 --- 0.14 115 9.5B 0.70 0.366 0.205 --- 0.16 116 9.67 0.70 0.366 0.204 --- 0.16 117 9.75 0.70 0.366 0.203 --- 0.16 118 9.83 0.73 0.383 0.202 --- 0.18 119 9.92 0.73 0.383 0.201 --- 0.18 120 10.00 0.73 0.383 0.200 --- 0.18 121 10.08 0.50 0.261 0.199 --- 0.06 122 10.17 0.50 0.261 0.198 --- 0.06 123 10.25 0.50 0.261 0.197 --- 0.06 124 10.33 0.50 0.261 0.196 --- 0.06 125 10.42 0.50 0.261 0.195 --- 0.07 126 10.50 0.50 0.261 0.194 --- 0.07 127 10.58 0.67 0.348 0.193 --- 0.15 128 10.67 0.67 0.348 0.192 --- 0.16 129 10.75 0.67 0.348 0.191 --- 0.16 130 10.83 0.67 0.348 0.191 --- 0.16 131 10.92 0.67 0.348 0.190 --- 0.16 132 11.00 0.67 0.348 0.189 --- 0.16 133 11.08 0.63 0.331 0.188 --- 0.14 134 11.17 0.63 0.331 0.187 --- 0.14 135 11.25 0.63 0.331 0.186 --- 0.14 136 11.33 0.63 0.331 0.185 --- 0.15 137 11.42 0.63 0.331 0.184 --- 0.15 138 11.50 0.63 0.331 0.183 --- 0.15 139 11.58 0.57 0.296 0.182 --- 0.11 140 11.67 0.57 0.296 0.181 --- 0.11 141 11.75 0.57 0.296 0.180 --- 0.12 142 11.83 0.60 0.313 0.180 --- 0.13 143 11.92 0.60 0.313 0.179 --- 0.13 144 12.00 0.60 0.313 0.178 --- 0.14 145 12.08 0.83 0.435 0.177 --- 0.26 146 12.17 0.83 0.435 0.176 --- 0.26 147 12.25 0.83 0.435 0.175 --- 0.26 148 12.33 0.87 0.453 0.174 --- 0.28 149 12.42 0.87 0.453 0.173 --- 0.28 150 12.50 0.87 0.453 0.172 --- 0.28 151 12.58 0.93 0.487 0.172 --- 0.32 152 12.6.7 0.93 0.487 0.171 --- 0.32 153 12.75 0.93 0.487 0.170 --- 0.32 154 12.83 0.97 0.505 0.169 --- 0.34 155 12.92 0.97 0.505 0.168 --- 0.34 156 13.00 0.97 0.505 0.167 --- 0.34 157 13.08 1.13 0.592 0.166 --- 0.43 158 13.17 1.13 0.592 0.166 --- 0.43 159 13.25 1.13 0.592 0.165 --- 0.43 160 13.33 1.13 0.592 0.164 --- 0.43 161 13.42 1.13 0.592 0.163 --- 0.43 162 13.50 1.13 0.592 0.162 --- 0.43 163 13.58 0.77 0.400 0.161 --- 0.24 164 13.67 0.77 0.400 0.161 --- 0.24 165 13.75 0.77 0.400 0.160 --- 0.24 166 13.83 0.77 0.400 0.159 --- 0.24 167 13.92 0.77 0.400 0.158 --- 0.24 168 14.00 0.77 0.400 0.157 --- 0.24 169 14.08 0.90 0.470 0.157 --- 0.31 170 14.17 0.90 0.470 0.156 --- 0.31 171 14.25 0.90 0.470 0.155 --- 0.31 172 14.33 0.87 0.453 0.154 --- 0.30 173 14.42 0.87 0.453 0.153 --- 0.30 174 14.50 0.87 0.453 0.153 --- 0.30 175 14.58 0.87 0.453 0.152 --- 0.30 176 14.67 0.87 0.453 0.151 --- 0.30 177 14.75 0.87 0.453 0.150 --- 0.30 178 14.83 0.83 0.435 0.150 --- 0.29 179 14.92 0.83 0.435 0.149 --- 0.29 180 15.00 0.83 0.435 0.148 --- 0.29 181 15.08 0.80 0.418 0.147 --- 0.27 182 15.17 0.80 0.418 0.146 --- 0.27 183 15.25 0.80 0.418 0.146 --- 0.27 184 15.33 0.77 0.400 0.145 --- 0.26 185 15.42 0.77 0.400 0.144 --- 0.26 186 15.50 0.77 0.400 0.143 --- 0.26 187 15.58 0.63 0.331 0.143 --- 0.19 188 15.67 0.63 0.331 0.142 --- 0.19 189 15.75 0.63 0.331 0.141 --- 0.19 190 15.83 0.63 0.331 0.141 --- 0.19 191 15.92 0.63 0.331 0.140 --- 0.19 192 16.00 0.63 0.331 0.139 --- 0.19 193 16.08 0.13 0.070 0.138 0.060 0.01 194 16.17 0.13 0.070 0.138 0.060 0.01 195 16.25 0.13 0.070 0.137 0.060 0.01 196 16.33 0.13 0.070 0.136 0.060 0.01 197 16.42 0.13 0.070 0.136 0.060 0.01 198 16.50 0.13 0.070 0.135 0.060 0.01 199 16.58 0.10 0.052 0.134 0.045 0.01 200 16.67 0.10 0.052 0.134 0.045 0.01 201 16.75 0.10 0.052 0.133 0.045 0.01 202 16.83 0.10 0.052 0.132 0.045 0.01 203 16.92 0.10 0.052 0.132 0.045 0.01 204 17.00 0.10 0.052 0.131 0.045 0.01 205 17.08 0.17 0.087 0.130 0.075 0.01 206 17.17 0.17 0.087 0.130 0.075 0.01 207 17.25 0.17 0.087 0.129 0.075 0.01 208 17.33 0.17 0.087 0.128 0.075 0.01 209 17.42 0.17 0.087 0.128 0.075 0.01 210 17.50 0.17 0.OB7 0.127 0.075 0.01 211 17.58 0.17 0.087 0.126 0.075 0.01 212 17.67 0.17 0.087 0.126 0.075 0.01 213 17.75 0.17 0.081 0.125 0.015 0.01 214 17.83 0.13 0.070 0.124 0.060 0.01 215 17.92 0.13 0.070 0.124 0.060 0.01 216 18.00 0.13 0.070 0.123 0.060 0.01 217 18.08 0.13 0.070 0.123 0.060 0.01 218 18.17 0.13 0.070 0.122 0.060 0.01 219 18.25 0.13 0.070 0.121 0.060 0.01 220 18.33 0.13 0.070 0.121 0.060 0.01 221 18.42 0.13 0.070 0.120 0.060 0.01 222 18.50 0.13 0.070 0.120 0.060 0.01 223 18.58 0.10 0.052 0.119 0.045 0.01 224 18.67 0.10 0.052 0.119 0.045 0.01 225 18.75 0.10 0.052 0.118 0.045 0.01 226 18.83 0.07 0.035 0.117 0.030 0.00 227 18.92 0.07 0.035 0.117 0.030 0.00 228 19.00 0.07 0.035 0.116 0.030 0.00 229 19.08 0.10 0.052 0.116 0.045 0.01 230 19.17 0.10 0.052 0.115 0.045 0.01 231 19.25 0.10 0.052 0.115 0.045 0.01 232 19.33 0.13 0.070 0.114 0.060 0.01 233 19.42 0.13 0.070 0.114 0.060 0.01 234 19.50 0.13 0.070 0.113 0.060 0.01 235 19.58 0.10 0.052 0.113 0.045 0.01 236 19.67 0.10 0.052 0.112 0.045 0.01 237 19.75 0.10 0.052 0.112 0.045 0.01 238 19.83 0.07 0.035 0.111 0.030 0.00 239 19.92 0.07 0.035 0.111 0.030 0.00 240 20.00 0.07 0.035 0.110 0.030 0.00 241 20.08 0.10 0.052 0.110 0.045 0.01 242 20.17 0.10 0.052 0.109 0.045 0.01 243 20.25 0.10 0.052 0.109 0.045 0.01 244 20.33 0.10 0.052 0.108 0.045 0.01 245 20.42 0.10 0.052 0.108 0.045 0.01 246 20.50 0.10 0.052 0.107 0.045 0.01 247 20.58 0.10 0.052 0.107 0.045 0.01 248 20.67 0.10 0.052 0.106 0.045 0.01 249 20.75 0.10 0.052 0.106 0.045 0.01 250 20.83 0.07 0.035 0.105 0.030 0.00 -251 20.92 0.07 0.035 0.105 0.030 0.00 252 21.00 0.07 0.035 0.105 0.030 0.00 253 21.08 0.10 0.052 0.104 0.045 0.01 254 21.17 0.10 0.052 0.104 0.045 0.01 255 21.25 0.10 0.052 0.103 0.045 0.01 256 21.33 0.07 0.035 0.103 0.030 0.00 257 21.42 0.07 0.035 0.103 0.030 0.00 258 21.50 0.07 0.035 0.102 0.030 0.00 259 21.58 0.10 0.052 0.102 0.045 0.01 260 21.67 0.10 0.052 0.101 0.045 0.01 261 21.75 0.10 0.052 0.101 0.045 0.01 262 21.83 0.07 0.035 0.101 0.030 0.00 263 21.92 0.07 0.035 0.100 0.030 0.00 264 22.00 0.07 0.035 0.100 0.030 0.00 265 22.08 0.10 0.052 0.100 0.045 0.01 266 22.17 0.10 0.052 0.099 0.045 0.01 267 22.25 0.10 0.052 0.099 0.045 0.01 268 22.33 0.07 0.035 0.099 0.030 0.00 269 22.42 0.07 0.035 0.098 0.030 0.00 270 22.50 0.07 0.035 0.098 0.030 0.00 271 22.58 0.07 0.035 0.098 0.030 0.00 272 22.67 0.07 0.035 0.098 0.030 0.00 273 22.75 0.07 0.035 0.097 0.030 0.00 274 22.83 0.07 0.035 0.097 0.030 0.00 275 22.92 0.07 0.035 0.097 0.030 0.00 276 23.00 0.07 0.035 0.097 0.030 0.00 277 23.08 0.07 0.035 0.096 0.030 0.00 278 23.17 0.07 0.035 0.096 0.030 0.00 279 23.25 0.07 0.035 0.096 0.030 0.00 280 23.33 0.07 0.035 0.096 0.030 0.00 281 23.42 0.07 0.035 0.096 0.030 0.00 282 23.50 0.07 0.035 0.095 0.030 0.00 283 23.58 0.07 0.035 0.095 0.030 0.00 284 23.67 0.07 0.035 0.095 0.030 0.00 285 23.75 0.07 0.035 0.095 0.030 0.00 286 23.83 0.07 0.035 0.095 0.030 0.00 287 23.92 0.07 0.035 0.095 0.030 0.00 288 24.00 0.07 0.035 0.095 0.030 0.00 Sum = 100.0 Sum = 21.5 Flood volume = Effective rainfall 1.79(In) times area 4.9(Ac.)/[ (In)/(Ft.)) = 0.7(Ac.Ft) Total soil loss = 2.56(In) Total soil loss = 1.045(Ac.Ft) Total rainfall = 4.35(In) Flood volume = 31855.3 Cubic Feet Total soil loss = 45541.2 Cubic Feet -------------------------------------------------------------------- Peak flow rate of this hydrograph = 1.967(CFS) --------------------------------------------------------------------- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 24 - H O U R S T 0 R M R u n o f f H y d r o g r a p h -------------------------------------------------------------------- Hydrograph in 5 Minute intervals ( (CFS) ) --------------------------------------------------------------------- Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 -------------------------------------------------------------------------------- 0+ 5 0.0000 0.00 Q I I l I 0+10 0.0000 0.00 Q f I ! I 0+15 0.0001 0.01 Q I { I l 0+20 0.0002 0.02 Q I I I { 0+25 0.0003 0.02 Q I I I I 0+30 0.0005 0.02 Q I I I I 0+35 0.0007 0.03 Q I I I I 0+40 0.0009 0.03 Q I I I I 0+45 0.0011 0.03 Q ] I I I 0+50 0.0013 0.03 Q I I I I 0+55 0.0016 0.03 Q I I I I 1+ 0 0.0018 0.04 Q I I I I 1+ 5 0.0021 0.04 Q I I I ! 1+10 0.0024 0.04 Q I I I I 1+15 0.0026 0.04 Q ] 1 I I 1+20 0.0029 0.04 Q I I I I 1+25 0.0031 0.04 Q I I ! I 1+30 0.0034 0.04 Q I I ] { 1+35 0.0036 0.04 Q I I I 1 1+40 0.0039 0.04 Q I I l I 1+45 0.0041 0.04 Q I I 1 I 1+50 0.0044 0.04 Q I l I l 1+55 0.0047 0.04 Q 2+ 0 0.0049 0.04 Q 1 I I I 2+ 5 0.0053 0.04 Q I I I I 2+10 0.0056 0.04 2+15 0.0059 0.05 Q I l I I 2+20 0.0062 0.05 Q 2+25 0.0065 0.05 Q I I I I 2+30 0.0068 0.05 Q I I I I 2+35 0.0072 0.05 Q I I I l 2+40 0.0075 0.05 Q I I I ! 2+45 0.0079 0.05 Q I 1 I I 2+50 .0.0082 0.05 Q I 1 I I 2+55 0.0086 0.06 Q k I I I 3+ 0 0.0090 0.06 Q I I 1 l 3+ 5 0.0094 0.06 Q I I I I 3+10 0.0098 0.06 Q I I I I 3+15 0.0102 0.06 Q I 1 I I 3+20 0.0106 0.06 Q I I I I 3+25 0.0110 0.06 Q ! I I ! 3+30 0.0114 0.06 Q I I I I 3+35 0.0118 0.06 Q I k 1 1 3+40 0.0123 0.06 Q I 1 I I 3+45 0..0127 0.06 Q I I l l 3+50 0.0131 0.06 Q I I 1 1 3+55 0.0135 0.06 Q k I I I 4+ 0 0.0140 0.06 Q 1 I I I 4+ 5 0.0144 0.07 Q I ! I l 4+10 0.0149 0.07 Q I I I ! 4+15 0.0154 0.07 Q I I I I 4+20 0.0159 0.07 Q l I I I 4+25 0.0164 0.07 Q I I I I 4+30 0.0169 0.08 Q I I I I 4+35 0.0174 0.08 Q I I 1 1 4+40 0.0180 0.08 Q I I 1 I 4+45 0.0185 0.08 QV I I I I 4+50 0.0191 0.08 QV k I I I 4+55 0.0197 0.08 QV ! l I k 5+ 0 0.0203 0.09 QV 5+ 5 0.0209 0.09 QV I 1 I I 5+10 0.0215 0.09 QV I I I I 5+15 0.0220 0.08 QV I I I I 5+20 0.0226 0.08 QV I I l l 5+25 0.0231 0.08 QV 5+30 0.0237 0.08 QV 1 1 I I 5+35 0.0243 0.08 QV I I I I 5+40 0.0248 0.09 QV I I I I 5+45 0.0255 0.09 QV I ! I l 5+50 0.0261 0.09 QV I I E ! 5+55 0.0267 0.09 QV I k 1 I 6+ 0 0.0274 0.09 QV 6+ 5 0.0280 0:09 QV I I I I 6+10 0.0287 0.10 QV I I I I 6+15 0.0294 0.10 QV I I l E 6+20 0.0301 0.10 QV I I 1 I 6+25 0.0308 0.10 QV k E 1 I 6+30 0.0315 0.10 QV f I I I 6+35 0.0322 0.11 QV I I I I 6+40 0.0330 0.11 QV I I I k 6+45 0.0337 0.11 QV 6+50 0.0345 0.11 QV I I I I 6+55 0.0353 0.12 QV I I I I 7+ 0 0.0361 0.12 QV I I 1 I 7+ 5 0.0369 0.12 Q V I I I I 7+10 0.0377 0.12 Q V I I I 1 7+15 0.0386 0.12 Q V { { I I 7+20 0.0394 0.12 Q V ] I I I 7+25 0.0402 0.12 Q v I I I I 7+30 0.0411 0.12 Q V I I I l 7+35 0.0419 0.13 Q V I I I 1 7+40 0.0428 0.13 Q V I l I I 7+45 0.0438 0.13 Q V l S l I 7+50 0.0447 0.14 Q V I I I I 7+55 0.0456 0.14 Q V ] I I I 8+ 0 0.0465 0.12 Q V I I I 1 8+ 5 0.0471 0.09 Q v I I I I 8+10 0.0477 0.09 Q v I 8+15 0.0486 0.12 Q V I 1 I I 8+20 0.0496 0.15 Q v I I I 1 8+25 0.0507 0.17 Q V 1 I I I 8+30 0.0520 0.18 Q V I I I I 8+35 0.0532 0.19 Q V I l l I 8+40 0.0547 0.21 Q V I S 1 I 8+45 0.0563 0.23 Q V I I I S 8+50 0.0581 0.26 IQ V ! I I I 8+55 0.0600 0.29 IQ V ] I I I 9+ 0 0.0622 0.32 IQ V I I ! I 9+ 5 0.0647 0.35 IQ V I { 1 l 9+10 0.0674 0.39 IQ V I ] I 1 9+15 0.0704 0.45 IQ V I I I I 9+20 0.0738 0.49 IQ V I I I I 9+25 0.0775 0.53 1 Q V I I ! I 9+30 0.0815 0.57 I Q V I { I { 9+35 0.0857 0.61 1 Q V I ] I 1 9+40 0.0901 0.64 1 Q V I I I I 9+45 0.0948 0.68 1 Q V I I l I 9+50 0.0997 0.71 1 Q V I I 1 1 9+55 0.1048 0.75 1 Q V I I I { 10+ 0 0.1102 0.78 1 Q V I ! I 1 10+ 5 0.1157 0.79 1 Q V I 1 I I 10+10 0.1207 0.73 1 Q V I I I I 10+15 0.1249 0.60 1 Q V I I ! I 10+20 0.1283 0.50 IQ v I I I { 10+25 0.1314 0.45 IQ v ] l I ] 10+30 0.1343 0.42 {Q V I ! I I 10+35 0.1372 0.42 ]Q V I 1 l I 10+40 0.1404 0.47 IQ V I I ! I 10+45 0.1443 0.57 I Q V I I 1 1 10+50 0.1488 0.64 I Q V E I I 1 10+55 0.1535 0.68 I Q V ! I I I 11+ 0 0.15B3 0.71 1 Q V I ! I I 11+ 5 0.1633 0.72 1 Q V I 1 I I 11+10 0.1683 0.72 1 Q VI I I I 11+15 0.1732 0.71 1 Q VI I I ! 11+20 0.1781 0.71 1 Q V1 I I I 11+25 0.1829 0.71 I Q V I I I 11+30 0.1878 0.71 1 Q V { l I 11+35 0.1927 0.71 1 Q V ] 1 1 11+40 0.1974 0.69 1 Q V I I 1 11+45 0.2019 0.65 1 Q IV I I 1 11+50 0.2062 0.62 1 Q IV I I I 11+55 0.2105 0.62 1 Q IV I I I 12+ 0 0.2149 0.64 1 Q kV I k I 12+ 5 0.2195 0.67 I Q I V I I I 12+10 0.2248 0.77 1 Q I V I I I 12+15 0.2311 0.92 1 Q ! V I I I 12+20 0.2393 1.04 1 Q l V l I I 12+25 0.2460 1.12 1 Q I V I I I 12+30 0.2541 1.18 1 Q I V I I I 12+35 0.2626 1.23 1 Q I V I I I 12+40 0.2715 1.29 1 Q l V I l I 12+45 0.2808 1.36 1 Q E V I 1 1 12+50 0.2906 1.41 E Q I V I I I 12+55 0.3006 1.46 I Q I V I I I 13+ 0 0.3110 1.51 I Q I V I I I 13+ 5 0.3217 1.56 I Q I V I l l 13+10 0.3330 1.65 I Q I V I 1 1 13+15 0.3452 1.77 I Q I V [ I I 13+20 0.3581 1.87 1 Q I VI I I 13+25 0.3714 1.93 ! Q I V I I 13+30 0.3849 1.97 I Q I IV I I 13+35 0.3984 1.96 I Q I IV I I 13+40 0.4112 1.85 I Q 1 I V I I 13+45 0.4226 1.65 I Q 1 l V I I 13+50 0.4328 1.49 l Q I I V I l 13+55 0.4425 1.40 1 Q I I V I 1 14+ 0 0.4519 1.36 1 Q I I V I I 14+ 5 0.4611 1.34 I Q l l V I I 14+10 0.4706 1.37 I Q I ! V I I 14+15 0.4805 1.44 1 Q I I V I I 14+20 0.4907 1.49 [ Q I I V I I 14+25 0.5011 1.50 I Q I I V I I 14+30 0.5113 1.49 I Q I I V I I 14+35 0.5216 1.49 1 Q I I V I E 14+40 0.5318 1.49 1 Q 1 I Vl 1 14+45 0.5421 1.49 1 Q I I VI I 14+50 0.5523 1.49 1 Q 1 1 V I 14+55 0.5625 1.48 1 Q I I V l 15+ 0 0.5725 1.46 1 Q I E IV 1 15+ 5 0.5824 1.44 1 Q I I IV I 15+10 0.5922 1.42 1 Q I I I V I 15+15 0.6018 1.40 1 Q I I I V I 15+20 0.6113 1.38 1 Q I I I V I 15+25 0.6206 1.35 1 Q I I I V I 15+30 0.6298 1.33 1 Q I I k V I 15+35 0.6388 1.30 1 Q ! I 1 V I 15+40 0.6473 1.24 1 Q I I I V l 15+45 0.6553 1.16 1 Q I I I V I 15+50 0.6628 1.09 I Q I I I V 1 15+55 0.6700 1.05 1 Q I ! I V I 16+ 0 0.6771 1.03 1 Q 1 1 ! V I 16+ 5 0.6839 0.98 1 Q I I I V l 16+10 0.6897 0.84 1 Q I I I V 1 16+15 0.6940 0.62 1 Q I I I V I 16+20 0.6970 0.44 IQ I I l V 1 16+25 0.6993 0.34 IQ I 1 ! V 1 16+30 0.7013 0.28 IQ I I I V k 16+35 0.7029 0.24 Q I I I V 1 16+40 0.7043 0.20 Q I I I V 1 16+45 0.7054 0.17 Q I I I V I 16+50 0.7064 0.15 Q I I I V 1 16+55 0.7073 0.13 Q I I 1 V l 17+ 0 0.7081 0.11 Q I I I V 1 17+ 5 0.7087 0.10 Q { I I V I 17+10 0.7093 0.09 Q I I I V I 17+15 0.7099 0.09 Q I I [ V I 17+20 0.7105 0.08 Q I I l v l 17+25 0.7110 0.08 Q I i 1 v l 17+30 0.7115 0.07 Q I 1 I V l 17+35 0.7120 0.07 Q I I I v 1 17+40 0.7125 0.07 Q f I I v 1 17+45 0.7129 0.06 Q I I l v 1 17+50 0.7133 0.06 Q I I i VI 17+55 0.7137 0.06 Q I k I vi 18+ 0 0.7141 0.05 Q I I I V1 18+ 5 0.7145 0.05 Q I I I VI 18+10 0.7140 0.05 Q I I I v1 1B+15 0.7151 0.05 Q I I I VI 18+20 0.7155 0.05 Q I I 1 VI 18+25 0.7158 0.05 Q I I I VI 18+30 0.7162 0.05 Q I I I VI 18+35 0.7165 0.05 Q I I I VI 18+40 0.7168 0.05 Q I I I VI 18+45 0.7171 0.04 Q I I I VI 18+50 0.7174 0.04 Q i I I VI 18+55 0.7177 0.04 Q I i I VI 19+ 0 0.7179 0.03 Q I I I VI 19+ 5 0.7181 0.03 Q I I I VI 19+10 0.7183 0.03 Q I I 1 vi 19+15 0.71B6 0.03 Q I I I VI 19+20 0.7188 0.04 Q 1 I I VI 19+25 0.7191 0.04 Q I 1 I vi 19+30 0.7194 0.04 Q I I I VI 19+35 0.7197 0.04 Q I I I v! 19+40 0.7199 0.04 Q I I I VI 19+45 0.7202 0.04 Q I I I VI 19+50 0.7205 0.04 Q I I I VI 19+55 0.7207 0.04 Q I I I VI 20+ 0 0.7210 0.03 Q I I 1 vi 20+ 5 0.7212 0.03 Q I I I VI 20+10 0.7214 0.03 Q I I I VI 20+15 0.7216 0.03 Q I I I VI 20+20 0.7218 0.03 Q I 1 I VI 20+25 0.7221 0.03 Q I I 1 VI 20+30 0.7223 0.04 Q I I I VI 20+35 0.7225 0.04 Q I I I VI 20+40 0.7228 0.04 Q I I I VI 20+45 0.7230 0.04 Q I I I VI 20+50 0.7233 0.04 Q I 1 I VI 20+55 0.7235 0.03 Q 1 I I vi 21+ 0 0.7237 0.03 Q I I I VI 21+ 5 0.7239 0.03 Q I I I VI 21+10 0.7241 0.03 Q I I I VI 21+15 0.7243 0.03 Q I k I VI 21+20 0.7246 0.03 Q I ! I VI 21+25 0.7248 0.03 Q I I I VI 21+30 0.7250 0.03 Q 1 I I VI 21+35 0.7252 0.03 Q I I I VI 21+40 0.7254 0.03 Q I I I vi 21+45 0.7256 0.03 Q I I I VI 21+50 0.7258 0.03 Q I ! I VI 21+55 0.7261 0.03 Q 1 I I VI 22+ 0 0.7263 0.03 Q I I I VI 22+ 5 0.7264 0.03 Q 1 I I VI 22+10 0.7266 0.03 Q I I 1 vi 22+15 0.7269 0.03 Q I I I VI 22+20 0.7271 0.03 Q I i I VI 22+25 0.7273 0.03 Q I 1 I v1 22+30 0.7275 0.03 Q I I I VI 22+35 0.7277 0.03 Q I I I VI 22+40 0.7279 0.03 Q ( I I VI 22+45 0.7280 0.03 Q I I I VI 22+50 0.7282 0.03 Q I 1 I VI 22+55 0.7284 0.03 Q { I I VI 23+ 0 0.7286 0.03 Q I I I VI 23+ 5 0.7287 0.02 Q I I 1 VI 23+10 0.7289 0.02 Q I l I VI 23+15 0.7291 0.02 Q 1 I I VI 23+20 0.7293 0.02 Q I I I VI 23+25 0.7294 0.02 Q E I I VI 23+30 0.7296 0.02 Q I I 1 VI 23+35 0.7298 0.02 Q I I I V1 23+40 0.7299 0.02 Q I I I VI 23+45 0.7301 0.02 Q I I I VI 23+50 0.7303 0.02 Q I I l VI 23+55 0.7304 0.02 Q I I 1 VI 24+ 0 0.7306 0.02 Q I I I VI 24+ 5 0.7307 0.02 Q I ! I VI 24+10 0.7309 0.02 Q I I I VI 24+15 0.7310 0.01 Q I I I VI 24+20 0.7310 0.01 Q f I 1 VI 24+25 0.7311 0.01 Q I l I VI 24+30 0.7311 0.01 Q I I I VI 24+35 0.7312 0.00 Q I 1 I VI 24+40 0.7312 0.00 Q I I I VI 24+45 0.7312 0.00 Q I I I VI 24+50 0.7312 0.00 Q I I I VI 24+55 0.7312 0.00 Q I I I VI 25+ 0 0.7313 0.00 Q I I I VI 25+ 5 0.7313 0.00 Q I I 1 VI 25+10 0.7313 0.00 Q I I I VI 25+15 0.7313 0.00 Q l I I VI 25+20 0.7313 0.00 Q I I I VI 25+25 0.7313 0.00 Q I I l VI 25+30 0.7313 0.00 Q I I I VI 25+35 0.7313 0.00 Q 1 1 1 VI 25+40 0.7313 0.00 Q I I I VI 25+45 0.7313 0.00 Q I I I VI 25+50 0.7313 0.00 Q I I I V ----------------------------------------------------------------------- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/19/18 File: prmt2410.out +f++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t+++ ------------------------------------------------------------------------ Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 4002 --------------------------------------------------------------------- English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format --------------------------------------------------------------------- MISSION TRAIL APARTMENTS 10-YEAR 24 HOUR UNIT HYDROGRAPH POST DEVELOPMENT CONDITION (NO-OFFSITE FLOW) BY KAM 051818 -------------------------------------------------------------------- Drainage Area = 4.60(Ac.) = 0.007 Sq. Mi. Drainage Area for Depth-Area Areal Adjustment = 4.60(Ac.) = 0.007 Sq. Mi. USER Entry of lag time in hours Lag time = 0.115 Hr. Lag time = 6.90 Min. 25% of lag time = 1.73 Min. 40% of lag time = 2.76 Min. Unit time = 5.00 Min. Duration of storm = 24 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.) [l] Rainfall(In) [2] Weighting[1*2] 4.60 2.50 11.50 100 YEAR Area rainfall data: Area(Ac.) [1] Rainfall(In) [2] Weighting[1*2] 4.60 7.00 32.20 STORM EVENT (YEAR) = 10.00 Area Averaged 2-Year Rainfall = 2.500(In) Area Averaged 100-Year Rainfall = 7.000(In) Point rain (area averaged) = 4.351(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 4.351(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 4.600 75.00 0.800 Total Area Entered = 4.60(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC-2 (In/Hr) (Dec.%) (In/Hr) (Dec.) (In/Hr) 75.0 75.0 0.303 0.800 0.085 1.000 0.085 Sum (F) = 0.085 Area averaged mean soil loss (F) (In/Hr) = 0.085 Minimum soil loss rate ( (In/Hr) ) = 0.042 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.260 --------------------------------------------------------------------- U n i t H y d r o g r a p h VALLEY S-Curve -------------------------------------------------------------------- Unit Hydrograph Data --------------------------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) --------------------------------------------------------------------- 1 0.083 72.464 11.262 0.522 2 0.167 144.928 41.331 1.916 3 0.250 217.391 22.310 1.034 4 0.333 289.855 8.796 0.408 5 0.417 362.319 5.341 0.248 6 0.500 434.783 3.496 0.162 7 0.583 507.246 2.388 0.111 8 0.667 579.710 1.808 0.084 9 0.750 652.174 1.280 0.059 10 0.833 724.638 0.872 0.040 11 0.917 797.101 0.725 0.034 12 1.000 869.565 0.391 0.018 Sum = 100.000 Sum--- 4.636 -------------------------------------------------------------------------- Unit Time Pattern Storm Rain Loss rate(In./Hr) Effective (Hr.) Percent (In/Hr) Max I Low (In/Hr) 1 0.08 0.07 0.035 0.150 0.009 0.03 2 0.17 0.07 0.035 0.150 0.009 0.03 3 0.25 0.07 0.035 0.149 0.009 0.03 4 0.33 0.10 0.052 0.149 0.014 0.04 5 0.42 0.10 0.052 0.148 0.014 0.04 6 0.50 0.10 0.052 0.148 0.014 0.04 7 0.58 0.10 0.052 0.147 0.014 0.04 8 0.67 0.10 0.052 0.146 0.014 0.04 9 0.75 0.10 0.052 0.146 0.014 0.04 10 0.83 0.13 0.070 0.145 0.018 0.05 11 0.92 0.13 0.070 0.145 0.018 0.05 12 1.00 0.13 0.070 0.144 0.018 0.05 13 1.08 0.10 0.052 0.143 0.014 0.04 14 1.17 0.10 0.052 0.143 0.014 0.04 15 1.25 0.10 0.052 0.142 0.014 0.04 16 1.33 0.10 0.052 0.142 0.014 0.04 17 1.42 0.10 0.052 0.141 0.014 0.04 18 1.50 0.10 0.052 0.141 0.014 0.04 19 1.58 0.10 0.052 0.140 0.014 0.04 20 1.67 0.10 0.052 0.140 0.014 0.04 21 1.75 0.10 0.052 0.139 0.014 0.04 22 1.83 0.13 0.070 0.138 0.018 0.05 23 1.92 0.13 0.070 0.138 0.018 0.05 24 2.00 0.13 0.070 0.137 0.018 0.05 25 2.08 0.13 0.070 0.137 0.018 0.05 26 2.17 0.13 0.070 0.136 0.018 0.05 27 2.25 0.13 0.070 0.136 0.018 0.05 28 2.33 0.13 0.070 0.135 0.018 0.05 29 2.42 0.13 0.070 0.135 0.018 0.05 30 2.50 0.13 0.070 0.134 0.018 0.05 31 2.58 0.17 0.087 0.133 0.023 0.06 32 2.67 0.17 0.087 0.133 0.023 0.06 33 2.75 0.17 0.087 0.132 0.023 0.06 34 2.83 0.17 0.087 0.132 0.023 0.06 35 2.92 0.17 0.087 0.131 0.023 0.06 36 3.00 0.17 0.087 0.131 0.023 0.06 37 3.08 0.17 0.087 0.130 0.023 0.06 38 3.17 0.17 0.087 0.130 0.023 0.06 39 3.25 0.17 0.087 0.129 0.023 0.06 40 3.33 0.17 0.087 0.129 0.023 0.06 41 3.42 0.17 0.087 0.128 0.023 0.06 42 3.50 0.17 0.087 0.127 0.023 0.06 43 3.58 0.17 0.087 0.127 0.023 0.06 44 3.67 0.17 0.087 0.126 0.023 0.06 45 3.75 0.17 0.087 0.126 0.023 0.06 46 3.83 0.20 0.104 0.125 0.027 0.08 47 3.92 0.20 0.104 0.125 0.027 0.08 48 4.00 0.20 0.104 0.124 0.027 0.08 49 4.08 0.20 0.104 0.124 0.027 0.08 50 4.17 0.20 0.104 0.123 0.027 0.08 51 4.25 0.20 0.104 0.123 0.027 0.08 52 4.33 0.23 0.122 0.122 0.032 0.09 53 4.42 0.23 0.122 0.122 --- 0.00 54 4.50 0.23 0.122 0.121 --- 0.00 55 4.58 0.23 0.122 0.121 --- 0.00 56 4.67 0.23 0.122 0.120 --- 0.00 57 4.75 0.23 0.122 0.120 --- 0.00 58 4.83 0.27 0.139 0.119 --- 0.02 59 4.92 0.27 0.139 0.119 --- 0.02 60 5.00 0.27 0.139 0.118 --- 0.02 61 5.08 0.20 0.104 0.118 0.027 0.08 62 5.17 0.20 0.104 0.117 0.027 0.08 63 5.25 0.20 0.104 0.117 0.027 0.08 64 5.33 0.23 0.122 0.116 --- 0.01 65 5.42 0.23 0.122 0.116 --- 0.01 66 5.50 0.23 0.122 0.115 - 0.01 67 5.58 0.27 0.139 0.114 --- 0.02 68 5.67 0.27 0.139 0.114 --- 0.03 69 5.75 0.27 0.139 0.113 --- 0.03 70 5.83 0.27 0.139 0.113 --- 0.03 71 5.92 0.27 0.139 0.112 --- 0.03 72 6.00 0.27 0.139 0.112 --- 0.03 73 6.08 0.30 0.157 0.111 --- 0.05 74 6.17 0.30 0.157 0.111 --- 0.05 75 6.25 0.30 0.157 0.110 --- 0.05 76 6.33 0.30 0.157 0.110 --- 0.05 77 6.42 0.30 0.157 0.110 --- 0.05 78 6.50 0.30 0.157 0.109 --- 0.05 79 6.58 0.33 0.174 0.109 --- 0.07 80 6.67 0.33 0.174 0.108 --- 0.07 81 6.75 0.33 0.174 0.108 --- 0.07 82 6.83 0.33 0.174 0.107 --- 0.07 83 6.92 0.33 0.174 0.107 --- 0.07 84 7.00 0.33 0.174 0.106 --- 0.07 85 7.08 0.33 0.174 0.106 --- 0.07 86 7.17 0.33 0.174 0.105 --- 0.07 87 7.25 0.33 0.174 0.105 --- 0.07 88 7.33 0.37 0.191 0.104 --- 0.09 89 7.42 0.37 0.191 0.104 --- 0.09 90 7.50 0.37 0.191 0.103 --- 0.09 91 7.58 0.40 0.209 0.103 --- 0.11 92 7.67 0.40 0.209 0.102 --- 0.11 93 7.75 0.40 0.209 0.102 --- 0.11 94 7.83 0.43 0.226 0.101 --- 0.12 95 7.92 0.43 0.226 0.101 --- 0.13 96 8.00 0.43 0.226 0.100 --- 0.13 97 8.08 0.50 0.261 0.100 --- 0.16 98 8.17 0.50 0.261 0.099 --- 0.16 99 8.25 0.50 0.261 0.099 --- 0.16 100 8.33 0.50 0.261 0.099 --- 0.16 101 8.42 0.50 0.261 0.098 --- 0.16 102 8.50 0.50 0.261 0.098 --- 0.16 103 8.58 0.53 0.278 0.097 --- 0.18 104 8.67 0.53 0.278 0.097 --- 0.18 105 8.75 0.53 0.278 0.096 --- 0.18 106 8.83 0.57 0.296 0.096 --- 0.20 107 8.92 0.57 0.296 0.095 --- 0.20 108 9.00 0.57 0.296 0.095 --- 0.20 109 9.08 0.63 0.331 0.094 --- 0.24 110 9.17 0.63 0.331 0.094 --- 0.24 111 9.25 0.63 0.331 0.094 --- 0.24 112 9.33 0.67 0.348 0.093 --- 0.25 113 9.42 0.67 0.348 0.093 --- 0.26 114 9.50 0.67 0.348 0.092 --- 0.26 115 9.58 0.70 0.366 0.092 --- 0.27 116 9.67 0.70 0.366 0.091 --- 0.27 117 9.75 0.70 0.366 0.091 --- 0.27 118 9.83 0.73 0.383 0.090 --- 0.29 119 9.92 0.73 0.383 0.090 --- 0.29 120 10.00 0.73 0.383 0.090 --- 0.29 121 10.08 0.50 0.261 0.089 --- 0.17 122 10.17 0.50 0.261 0.089 --- 0.17 123 10.25 0.50 0.261 0.088 --- 0.17 124 10.33 0.50 0.261 0.088 --- 0.17 125 10.42 0.50 0.261 0.087 --- 0.17 126 10.50 0.50 0.261 0.087 --- 0.17 127 10.58 0.67 0.348 0.087 --- 0.26 128 10.67 0.67 0.348 0.086 --- 0.26 129 10.75 0.67 0.348 0.086 --- 0.26 130 10.83 0.67 0.348 0.085 --- 0.26 131 10.92 0.67 0.348 0.085 --- 0.26 132 11.00 0.67 0.348 0.084 --- 0.26 133 11.08 0.63 0.331 0.084 --- 0.25 134 11.17 0.63 0.331 0.084 --- 0.25 135 11.25 0.63 0.331 0.083 --- 0.25 136 11.33 0.63 0.331 0.083 --- 0.25 137 11.42 0.63 0.331 0.062 --- 0.25 138 11.50 0.63 0.331 0.082 --- 0.25 139 11.58 0.57 0.296 0.082 --- 0.21 140 11.67 0.57 0.296 0.081 --- 0.21 141 11.75 0.57 0.296 0.081 --- 0.22 142 11.83 0.60 0.313 0.080 --- 0.23 143 11.92 0.60 0.313 0.080 --- 0.23 144 12.00 0.60 0.313 0.080 --- 0.23 143 12.08 0.83 0.435 0.079 --- 0.36 146 12.17 0.83 0.435 0.079 --- 0.36 147 12.25 0.83 0.435 0.078 --- 0.36 148 12.33 0.87 0.453 0.078 --- 0.37 149 12.42 0.87 0.453 0.078 --- 0.37 150 12.50 0.87 0.433 0.077 --- 0.38 151 12.58 0.93 0.487 0.077 --- 0.41 152 12.67 0.93 0.487 0.076 --- 0.41 153 12.75 0.93 0.487 0.076 --- 0.41 154 12.83 0.97 0.505 0.076 --- 0.43 155 12.92 0.97 0.505 0.075 --- 0.43 156 13.00 0.97 0.505 0.075 --- 0.43 157 13.08 1.13 0.592 0.075 --- 0.52 158 13.17 1.13 0.592 0.074 --- 0.52 159 13.25 1.13 0.592 0.074 --- 0.52 160 13.33 1.13 0.592 0.073 --- 0.52 161 13.42 1.13 0.592 0.073 --- 0.52 162 13.50 1.13 0.592 0.073 --- 0.52 163 13.58 0.77 0.400 0.072 --- 0.33 164 13.67 0.77 0.400 0.072 --- 0.33 165 13.75 0.77 0.400 0.072 --- 0.33 166 13.83 0.77 0.400 0.071 --- 0.33 167 13.92 0.77 0.400 0.071 --- 0.33 168 14.00 0.77 0.400 0.070 --- 0.33 169 14.08 0.90 0.470 0.070 --- 0.40 170 14.17 0.90 0.470 0.070 --- 0.40 171 14.25 0.90 0.470 0.069 --- 0.40 172 14.33 0.87 0.453 0.069 --- 0.38 173 14.42 0.87 0.453 0.069 --- 0.38 174 14.50 0.87 0.453 0.068 --- 0.38 175 14.58 0.87 0.453 0.068 --- 0.38 176 14.67 0.87 0.453 0.068 --- 0.38 177 14.75 0.87 0.453 0.067 --- 0.39 178 14.83 0.83 0.435 0.067 --- 0.37 179 14.92 0.83 0.435 0.067 --- 0.37 180 15.00 0.83 0.435 0.066 --- 0.37 181 15.08 0.80 0.418 0.066 --- 0.35 182 15.17 0.80 0.418 0.066 --- 0.35 183 15.25 0.80 0.418 0.065 --- 0.35 184 15.33 0.77 0.400 0.065 --- 0.34 185 15.42 0.77 0.400 0.065 --- 0.34 186 15.50 0.77 0.400 0.064 --- 0.34 187 15.58 0.63 0.331 0.064 --- 0.27 188 15.67 0.63 0.331 0.064 --- 0.27 189 15.75 0.63 0.331 0.063 --- 0.27 190 15.83 0.63 0.331 0.063 --- 0.27 191 15.92 0.63 0.331 0.063 --- 0.27 192 16.00 0.63 0.331 0.062 --- 0.27 193 16.08 0.13 0.070 0.062 --- 0.01 194 16.17 0.13 0.070 0.062 --- 0.01 195 16.25 0.13 0.070 0.061 --- 0.01 196 16.33 0.13 0.070 0.061 --- 0.01 197 16.42 0.13 0.070 0.061 --- 0.01 198 16.50 0.13 0.070 0.060 --- 0.01 199 16.58 0.10 0.052 0.060 0.014 0.04 200 16.67 0.10 0.052 0.060 0.014 0.04 201 16.75 0.10 0.052 0.060 0.014 0.04 202 16.83 0.10 0.052 0.059 0.014 0.04 203 16.92 0.10 0.052 0.059 0.014 0.04 204 17.00 0.10 0.052 0.059 0.014 0.04 205 17.08 0.17 0.087 0.058 --- 0.03 206 17.17 0.17 0.087 0.058 --- 0.03 207 17.25 0.17 0.087 0.058 --- 0.03 208 17.33 0.17 0.087 0.057 --- 0.03 209 17.42 0.17 0.087 0.057 --- 0.03 210 17.50 0.17 0.087 0.057 --- 0.03 211 17.58 0.17 0.087 0.057 --- 0.03 212 17.67 0.17 0.087 0.056 --- 0.03 213 17.75 0.17 0.087 0.056 --- 0.03 214 17.83 0.13 0.070 0.056 --- 0.01 215 17.92 0.13 0.070 0.055 --- 0.01 216 18.00 0.13 0.070 0.055 --- 0.01 217 18.08 0.13 0.070 0.055 --- 0.01 218 18.17 0.13 0.070 0.055 --- 0.01 219 18.25 0.13 0.070 0.054 --- 0.02 220 18.33 0.13 0.070 0.054 --- 0.02 221 18.42 0.13 0.070 0.054 --- 0.02 222 18.50 0.13 0.070 0.054 --- 0.02 223 18.58 0.10 0.052 0.053 0.014 0.04 224 18.67 0.10 0.052 0.053 0.014 0.04 225 18.75 0.10 0.052 0.053 0.014 0.04 226 18.83 0.07 0.035 0.053 0.009 0.03 227 18.92 0.07 0.035 0.052 0.009 0.03 228 19.00 0.07 0.035 0.052 0.009 0.03 229 19.08 0.10 0.052 0.052 --- 0.00 230 19.17 0.10 0.052 0.052 --- 0.00 231 19.25 0.10 0.052 0.051 --- 0.00 232 19.33 0.13 0.070 0.051 --- 0.02 233 19.42 0.13 0.070 0.051 --- 0.02 234 19.50 0.13 0.070 0.051 --- 0.02 235 19.58 0.10 0.052 0.050 --- 0.00 236 19.67 0.10 0.052 0.050 --- 0.00 237 19.75 0.10 0.052 0.050 --- 0.00 238 19.83 0.07 0.035 0.050 0.009 0.03 239 19.92 0.07 0.035 0.049 0.009 0.03 240 20.00 0.07 0.035 0.049 0.009 0.03 241 20.08 0.10 0.052 0.049 --- 0.00 242 20.17 0.10 0.052 0.049 --- 0.00 243 20.25 0.10 0.052 0.049 --- 0.00 244 20.33 0.10 0.052 0.048 --- 0.00 245 20.42 0.10 0.052 0.048 --- 0.00 246 20.50 0.10 0.052 0.048 --- 0.00 247 20.58 0.10 0.052 0.048 --- 0.00 248 20.67 0.10 0.052 0.048 --- 0.00 249 20.75 0.10 0.052 0.047 --- 0.00 250 20.83 0.07 0.035 0.047 0.009 0.03 251 20.92 0.07 0.035 0.047 0.009 0.03 252 21.00 0.07 0.035 0.047 0.009 0.03 253 21.08 0.10 0.052 0.047 --- 0.01 254 21.17 0.10 0.052 0.046 --- 0.01 255 21.25 0.10 0.052 0.046 --- 0.01 256 21.33 0.07 0.035 0.046 0.009 0.03 257 21.42 0.07 0.035 0.046 0.009 0.03 258 21.50 0.07 0.035 0.046 0.009 0.03 259 21.58 0.10 0.052 0.046 --- 0.01 260 21.67 0.10 0.052 0.045 --- 0.01 261 21.75 0.10 0.052 0.045 --- 0.01 262 21.83 0.07 0.035 0.045 0.009 0.03 263 21.92 0.07 0.035 0.045 0.009 0.03 264 22.00 0.07 0.035 0.045 0.009 0.03 265 22.08 0.10 0.052 0.045 --- 0.01 266 22.17 0.10 0.052 0.045 --- 0.01 267 22.25 0.10 0.052 0.044 --- 0.01 268 22.33 0.07 0.035 0.044 0.009 0.03 269 22.42 0.07 0.035 0.044 0.009 0.03 270 22.50 0.07 0.035 0.044 0.009 0.03 271 22.58 0.07 0.035 0.044 0.009 0.03 272 22.67 0.07 0.035 0.044 0.009 0.03 273 22.75 0.07 0.035 0.044 0.009 0.03 274 22.83 0.07 0.035 0.043 0.009 0.03 275 22.92 0.07 0.035 0.043 0.009 0.03 276 23.00 0.07 0.035 0.043 0.009 0.03 277 23.08 0.07 0.035 0.043 0.009 0.03 278 23.17 0.07 0.035 0.043 0.009 0.03 279 23.25 0.07 0.035 0.043 0.009 0.03 280 23.33 0.07 0.035 0.043 0.009 0.03 281 23.42 0.07 0.035 0.043 0.009 0.03 282 23.50 0.07 0.035 0.043 0.009 0.03 283 23.58 0.07 0.035 0.043 0.009 0.03 284 23.67 0.07 0.035 0.043 0.009 0.03 285 23.75 0.07 0.035 0.043 0.009 0.03 286 23.83 0.07 0.035 0.042 0.009 0.03 287 23.92 0.07 0.035 0.042 0.009 0.03 288 24.00 0.07 0.035 0.042 0.009 0.03 Sum = 100.0 Sum = 35.8 Flood volume = Effective rainfall 2.99(In) times area 4.6(Ac.)/[ (In)/(Ft.) ] = 1.1(Ac.Ft) Total soil loss = 1.37(In) Total soil loss = 0.524(Ac.Ft) Total rainfall = 4.35(In) Flood volume = 49851.2 Cubic Feet Total soil loss = 22806.8 Cubic Feet -------------------------------------------------------------------- Peak flow rate of this hydrograph = 2.372(CFS) -------------------------------------------------------------------- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 24 - H O U R S T O R M R u n o f f H y d r o g r a p h -------------------------------------------------------------------- Hydrograph in 5 Minute intervals ((CFS)) -------------------------------------------------------------------- Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+ 5 0.0001 0.01 Q I I 0+10 0.0005 0.06 Q I I 0+15 0.0011 0.09 Q I I 0+20 0.0019 0.11 Q 1 I 1 0+25 0.0028 0.14 Q 0+30 0.0039 0.16 Q 0+35 0.0050 0.16 Q 0+40 0.0062 0.17 Q I 0+45 0.0074 0.17 Q I { 0+50 0.0086 0.18 Q I I 0+55 0.0101 0.21 Q I I 1+ 0 0.0116 0.22 Q I I 1+ 5 0.0131 0.22 Q I I 1+10 0.0145 0.20 Q fi I 1+15 0.0158 0.19 Q I I 1+20 0.0171 0.19 Q I I 1+25 0.0184 0.18 Q I I 1+30 0.0196 0.18 Q I I 1+35 0.0209 0.18 Q I I 1+40 0.0221 0.18 Q I I 1+45 0.0233 0.18 Q I I 1+50 0.0246 0.19 Q I 1+55 0.0261 0.21 Q I 2+ 0 0.0276 0.22 Q I ! 2+ 5 0.0292 0.23 QV I 2+10 0.0308 0.23 QV I 2+15 0.0324 0.23 QV I I 2+20 0.0340 0.24 QV I I 2+25 0.0357 0.24 QV I I 2+30 0.0373 0.24 QV I I I 2+35 0.0390 0.25 QV I I 2+40 0.0409 0.27 IQ I I 2+45 0.0428 0.28 IQ I I 2+50 0.0448 0.29 IQ I I 2+55 0.0468 0.29 IQ I I 3+ 0 0.0488 0.29 IQ I I 3+ 5 0.0509 0.30 IQ ! I I 3+10 0.0529 0.30 IQ I I I 3+15 0.0550 0.30 IQ I I I 3+20 0.0570 0.30 IQ I I 3+25 0.0591 0.30 IQV I I 3+30 0.0611 0.30 IQV I I 3+35 0.0632 0.30 IQV I I 3+40 0.0653 0.30 IQV I I 3+45 0.0673 0.30 IQV I 3+50 0.0694 0.31 IQV I I I 3+55 0.0717 0.33 IQV I I I 4+ 0 0.0741 0.34 IQV I I I I 4+ 5 0.0765 0.35 IQV I I I I 4+10 0.0789 0.35 IQV I I I I 4+15 0.0813 0.35 IQV I I I I 4+20 0.0838 0.36 IQV I I I I 4+25 0.0862 0.34 IQ V I I I 4+30 0.0874 0.18 Q V ! I I 4+35 0.0881 0.10 Q V f 1 I I 4+40 0.0885 0.07 Q V I ! I 1 4+45 0.0889 0.05 Q V I I I 4+50 0.0892 0.05 Q V I I I 4+55 0.0897 0.07 Q V I I 5+ 0 0.0903 0.09 Q V I I 5+ 5 0.0911 0.12 Q V I I 5+10 0.0927 0.23 Q V I 5+15 0.0946 0.29 IQ V ! I 5+20 0.0965 0.27 IQ V I 5+25 0.0976 0.15 Q V I I 5+30 0.0982 0.09 Q V I E I 5+35 0.0987 0.08 Q V I I I I 5+40 0.0995 0.10 Q V 5+45 0.1002 0.11 Q V I I I 5+50 0.1011 0.12 Q V I I I 5+55 0.1019 0.12 Q V I I I 6+ 0 0.1027 0.12 Q V I I I 6+ 5 0.1036 0.13 Q V I I I 6+10 0.1048 0.17 Q V I I I 6+15 0.1061 0.19 Q V I I I 6+20 0.1074 0.20 Q V I I I 6+25 0.1088 0.20 Q V I I I 6+30 0.1103 0.21 Q V I I I 6+35 0.1118 0.22 Q V I I 6+40 0.1136 0.26 IQ V I I I 6+45 0.1156 0.28 IQ V I I 6+50 0.1176 0.29 IQ V I I 6+55 0.1196 0.30 IQ V I 7+ 0 0.1217 0.30 IQ V I 7+ 5 0.1239 0.31 IQ V 7+10 0.1260 0.31 IQ V i E 7+15 0.1282 0.32 IQ V I I 7+20 0.1304 0.33 IQ V I 7+25 0.1330 0.36 IQ V I 7+30 0.1356 0.38 IQ V 7+35 0.1384 0.40 IQ V E 7+40 0.1414 0.44 IQ V I 7+45 0.1446 0.47 IQ V I I I 7+50 0.1480 0.49 IQ V I I I 7+55 0.1516 0.53 1 Q V I I 8+ 0 0.1554 0.55 I Q V I 8+ 5 0.1594 0.58 I Q V I 8+10 0.1639 0.66 I Q v I 8+15 0.1667 0.70 I Q V I 8+20 0.1737 0.72 I Q V I ! 8+25 0.1787 0.73 1 Q V I 8+30 0.1838 0.74 1 Q V I I 8+35 0.1890 0.76 I Q V I 8+40 0.1945 0.79 I Q V I 8+45 0.2001 0.82 I Q V I 8+50 0.2059 0.84 I Q V I 8+55 0.2119 0.88 I Q V I I 9+ 0 0.2182 0.90 1 Q V I I 9+ 5 0.2246 0.93 1 Q V I I 9+10 0.2315 1.01 1 Q V I I ! 9+15 0.2387 1.05 1 Q V I I I 9+20 0.2461 1.08 1 Q v I I 9+25 0.2538 1.12 1 Q V I 9+30 0.2617 1.15 1 Q VI I 9+35 0.2698 1.17 1 Q VI 9+40 0.2782 1.21 1 Q VI 9+45 0.2867 1.24 I Q V I 9+50 0.2954 1.26 1 Q V I 9+55 0.3044 1.30 1 Q V I I 10+ 0 0.3135 1.33 1 Q V I 10+ 5 0.3223 1.28 1 Q IV I I I 10+10 0.3296 1.05 1 Q IV I 10+15 0.3360 0.93 1 Q IV I 1 1 10+20 0.3421 0.89 1 Q IV I 10+25 0.3480 0.86 1 Q I V 10+30 0.3538 0.84 1 Q I V 10+35 0.3599 0.88 I Q I V 10+40 0.3670 1.04 I Q I V 10+45 0.3748 1.12 Q I v I 10+50 0.3827 1.16 1 Q I v I 10+55 0.3908 1.17 1 Q I V I I I 11+ 0 0.3990 1.19 1 Q I v I I I 11+ 5 0.4072 1.19 1 Q I v I I I 11+10 0.4152 1.17 1 Q I V I I I 11+15 0.4232 1.16 1 Q I V I I I 11+20 0.4311 1.15 1 Q I V I I 11+25 0.4391 1.15 1 Q I V I I 11+30 0.4470 1.16 1 Q I V I I 11+35 0.4549 1.14 1 Q I V I I 11+40 0.4623 1.07 I Q I V I I 11+45 0.4694 1.04 I Q I v I I 11+50 0.4765 1.03 I Q I V I ! 11+55 0.4838 1.06 I Q I V I 12+ 0 0.4912 1.07 1 Q I v I 12+ 5 0.4990 1.14 1 Q I V I 12+10 0.5085 1.38 1 Q I V I 12+15 0.5189 1.51 1 Q 1 V I 12+20 0.5297 1.57 1 Q 1 V I 12+25 0.5409 1.63 1 Q V I 12+30 0.5524 1.67 1 Q VI 12+35 0.5643 1.71 I Q I VI 12+40 0.5766 1.80 I Q I V 12+45 0.5893 1.85 f Q I V 12+50 0.6023 1.88 I Q I IV 12+55 0.6156 1.93 1 Q I IV 13+ 0 0.6290 1.96 I Q I V I I 13+ 5 0.6429 2.01 I Q I I V 1 I 13+10 0.6580 2.19 I Q I V I I 13+15 0.6738 2.29 I QI V I 13+20 0.6898 2.33 I QI I V I 13+25 0.7060 2.35 I QI I V I 13+30 0.7224 2.37 I QI V I 13+35 0.7381 2.28 1 QI V I 13+40 0.7514 1.93 I Q 1 V I 13+45 0.7633 1.74 I Q I I V I 13+50 0.7748 1.66 1 Q I I V I 13+55 0.7859 1.62 1 Q I I V I E 14+ 0 0.7969 1.59 1 Q I V I I 14+ 5 0.8080 1.61 I Q I I V I I 14+10 0.8199 1.73 I Q I I V I I 14+15 0.8322 1.79 I Q I I VI I 14+20 0.8447 1.80 1 Q I i VI I 14+25 0.8569 1.78 I Q I I VI I 14+30 0.8692 1.77 I Q I I V I 14+35 0.8814 1.78 I Q I I V 14+40 0.8937 1.78 1 Q I I IV 14+45 0.9059 1.78 1 Q I I IV 14+50 0.9182 1.78 1 Q I I I V 14+55 0.9302 1.75 1 Q I I f V 15+ 0 0.9421 1.73 1 Q I I 1 V 15+ 5 0.9539 1.71 1 Q I I I v 15+10 0.9655 1.68 1 Q I I I v 15+15 0.9769 1.66 1 Q I I I v 15+20 0.9882 1.64 1 Q I I I v k 15+25 0.9992 1.60 1 Q I I I v I 15+30 1.0101 1.58 1 Q I I I v I 15+35 1.0207 1.54 1 Q i I I V I 15+40 1.0304 1.40 1 Q I I I V I 15+45 1.0395 1.33 1 Q I I V I 15+50 1.0484 1.30 1 Q I I I V I 15+55 1.0572 1.28 1 Q I I I V I 16+ 0 1.0660 1.27 1 Q I I I V I 16+ 5 1.0737 1.12 1 Q I I I V I 16+10 1.0780 0.62 1 Q I I I v l 16+15 1.0804 0.35 IQ I I I V I 16+20 1.0820 0.24 Q I I 1 V 16+25 1.0832 0.17 Q 1 V 16+30 1.0841 0.13 Q I E V 16+35 1.0849 0.12 Q I I I V 16+40 1.0859 0.15 Q I I I v l 16+45 1.0871 0.17 Q I I I v l 16+50 1.0883 0.17 Q I I I V 1 16+55 1.0894 0.17 Q I I I V I 17+ 0 1.0906 0.17 Q I I I V 1 17+ 5 1.0918 0.17 Q I I V 1 17+10 1.0928 0.15 Q l I I V 1 17+15 1.0938 0.14 Q I I 1 V 1 17+20 1.0947 0.14 Q I V 1 17+25 1.0957 0.14 Q I l v 1 17+30 1.0967 0.14 Q I I I V 1 17+35 1.0977 0.14 Q I I I V 1 17+40 1.0986 0.14 Q I 1 V 1 17+45 1.0996 0.14 Q I I I V 1 17+50 1.1005 0.13 Q I I I V 1 17+55 1.1012 0.10 Q I I I V I 18+ 0 1.1018 0.08 Q I I V I 18+ 5 1.1024 0.08 Q I I v I. 18+10 1.1029 0.08 Q I I I V I 18+15 1.1034 0.07 Q I v 1 18+20 1.1039 0.07 Q I v 18+25 1.1044 0.07 Q I v 1 18+30 1.1049 0.07 Q I v 1 18+35 1.1055 0.09 Q I v 1 18+40 1.1064 0.13 Q I v 1 18+45 1.1074 0.15 Q I I I v 1 18+50 1.1085 0.16 Q I I v 1 18+55 1.1094 0.14 Q ! I v 1 19+ 0 1.1103 0.13 Q I v l 19+ 5 1.1111 0.11 Q I I v 1 19+10 1.1115 0.06 Q I I I v 1 19+15 1.1117 0.03 Q I I I v 1 19+20 1.1120 0.03 Q I I I v 1 19+25 1.1124 0.06 Q I I I v 1 19+30 1.1129 0.08 Q I I I v 1 19+35 1.1134 0.07 Q I I v 1 19+40 1.1137 0.04 Q I I v 1 19+45 1.1138 0.02 Q I v 1 19+50 1.1141 0.03 Q I v 1 19+55 1.1146 0.07 Q v 1 20+ 0 1.1152 0.10 Q I I I v 1 20+ 5 1.1159 0.09 Q I I VI 20+10 1.1162 0.05 Q I I I VI 20+15 1.1165 0.03 Q I I I VI 20+20 1.1167 0.03 Q I I I v1 20+25 1.1169 0.03 Q I I I VI 20+30 1.1170 0.02 Q I I I VI 20+35 1.1172 0.02 Q 1 I VI 20+40 1.1173 0.02 Q I I VI 20+45 1.1175 0.02 Q I I VI 20+50 1.1177 0.03 Q I I VI 20+55 1.1182 0.07 Q I I VI 21+ 0 1.1189 0.09 Q I I VI 21+ 5 1.1195 0.09 Q I I I VI 21+10 1.1199 0.06 Q I I VI 21+15 1.1202 0.04 Q I I VI 21+20 1.1205 0.05 Q I I VI 21+25 1.1211 0.08 Q I I I VI 21+30 1.1218 0.10 Q I VI 21+35 1.1225 0.10 Q I I VI 21+40 1.1229 0.07 Q I I VI 21+45 1.1233 0.05 Q I 1 VI 21+50 1.1236 0.05 Q I I VI 21+55 1.1242 0.08 Q I I I VI 22+ 0 1.1249 0.10 Q I I VI 22+ 5 1.1256 0.10 Q I I VI 22+10 1.1261 0.07 Q I I VI 22+15 1.1264 0.05 Q I I VI 22+20 1.1268 0.06 Q I I I VI 22+25 1.1274 0.09 Q I I I VI 22+30 1.1281 0.10 Q I I I VI 22+35 1.1289 0.11 Q I I I VI 22+40 1.1296 0.11 Q I I VI 22+45 1.1304 0.11 Q I I VI 22+50 1.1312 0.12 Q I I I VI 22+55 1.1320 0.12 Q I I I VI 23+ 0 1.1328 0.12 Q I I ! VI 23+ 5 1.1337 0.12 Q I VI 23+10 1.1345 0.12 Q I v1 23+15 1.1353 0.12 Q I I VI 23+20 1.1361 0.12 Q I I VI 23+25 1.1370 0.12 Q I I VI 23+30 1.1378 0.12 Q I I I vi 23+35 1.1386 0.12 Q I I I vi 23+40 1.1394 0.12 Q I I I VI 23+45 1.1402 0.12 Q I I I VI 23+50 1.1411 0.12 Q I I I VI 23+55 1.1419 0.12 Q I I I VI 24+ 0 1.1427 0.12 Q I I I VI 24+ 5 1.1434 0.11 Q i I I VI 24+10 1.1438 0.06 Q I I I VI 24+15 1.1440 0.03 Q I I I vi 24+20 1.1442 0.02 Q I I I vi 24+25 1.1443 0.01 Q I I I vi 24+30 1.1443 0.01 Q I I I vi 24+35 1.1444 0.01 Q I i I VI 24+40 1.1444 0.00 Q I I I VI 24+45 1.1444 0.00 Q I I I VI 24+50 1.1444 0.00 Q I I I vi 24+55 1.1444 0.00 Q I I I VI ----------------------------------------------------------------------- UNIT HYDROGRAPHS COMBINED OFF-SITE AND ON-SITE FLOWS Project Report Date: Sheet of Project: Job No.: RE: By: Contact: Phone: X) ST tw t`t 0�=f u)lut-PAW T o7-1k L- Al)-q ,- = aG o.7 Ac Ae i�y'(5-r 'vz' poSgigra-cA-t- lb At L-zT) �'0,2 M f'C�tCgnt--Tk-6� (o.6U)�(5.G5 l+ �D .�iG)�O.kf�)., D. I S01t_ T'v'4 Vc�f�flf�' ("CJi2 (2S�p it-\- s �N WILSON MIKAMI CORPORATION CONSULTING ENGINEERING SERVICES 9 CORPORATE PARK, SUITE 100• IRVINE, CA 92606 (949)679-0090 FAX (949)679-0091 U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/18/18 File: exmtl02410.out +++++.++++++++++++++++++++++++++++++.+t+++++++++++++++++++f+++++++++++++ ------------------------------------------------------------------------ Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 4002 --------------------------------------------------------------------- English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format ---------___--------------------------------------------------------------- MISSION TRAIL APARTMENTS 10-YEAR 24-HOUR UNIT HYDROGRAPH PRE-DEVELOP CONDITION BY KAM 051818 ------------------------------------------------------------------------- Drainage Area = 200.70(Ac.) = 0.314 Sq. Mi. Drainage Area for Depth-Area Areal Adjustment = 200.70 (Ac. ) - 0.314 Sq. Mi. USER Entry of lag time in hours Lag time = 0.240 Hr. Lag time = 14.40 Min. 25% of lag time = 3.60 Min. 40% of lag time = 5.76 Min. Unit time = 5.00 Min. Duration of storm = 24 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.) [1] Rainfall(In) [2] Weighting[1*2] 200.70 2.50 501.75 100 YEAR Area rainfall data: Area(Ac.) [1] Rainfall(In) [2] Weighting[1*2] 200.70 7.00 1404.90 STORM EVENT (YEAR) = 10.00 Area Averaged 2-Year Rainfall = 2.500(In) Area Averaged 100-Year Rainfall = 7.000(In) Point rain (area averaged) = 4.351(ln) Areal adjustment factor = 99.96 % Adjusted average point rain = 4.350(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 200.700 62.00 0.190 Total Area Entered = 200.70(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC-2 (In/Hr) (Dec.%) (In/Hr) (Dec.) (In/Hr) 62.0 62.0 0.448 0.190 0.372 1.000 0.372 Sum (F) = 0.372 Area averaged mean soil loss (F) (In/Hr) = 0.372 Minimum soil loss rate ((In/Hr) ) = 0.186 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.750 --------------------------------------------------------------------- U n i t H y d r o g r a p h VALLEY S--Curve -------------------------------------------------------------------- Unit Hydrograph Data ----------------------------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) ---------------------------------------------------------------------- 1 0.083 34.722 3.546 7.172 2 0.167 69.444 13.875 28.065 3 0.250 104.167 23.039 46.601 4 0.333 138.889 19.669 39.783 5 0.417 173.611 10.510 21.258 6 0.500 208.333 5.996 12.128 7 0.583 243.056 4.354 8.807 8 0.667 277.778 3.417 6.912 9 0.750 312.500 2.716 5.494 10 0.833 347.222 2.169 4.387 11 0.917 381.944 1.848 3.738 12 1.000 416.667 1.482 2.997 13 1.083 451.389 1.167 2.361 14 1.167 486.111 1.074 2.172 15 1.250 520.833 0.992 2.006 16 1.333 555.556 0.784 1.586 17 1.417 590.278 0.674 1.363 18 1.500 625.000 0.589 1.191 19 1.583 659.722 0.486 0.983 20 1.667 694.444 0.383 0.775 21 1.750 729.167 0.347 0.702 22 1.833 763.889 0.347 0.702 23 1.917 798.611 0.347 0.702 24 2.000 833.333 0.188 0.379 Sum = 100.000 Sum= 202.268 -----------------------------------_-------------------------------------- Unit Time Pattern Storm Rain Loss rate(In./Hr) Effective (Hr.) Percent (In/Hr) Max I Low (In/Hr) 1 0.08 0.07 0.035 0.659 0.026 0.01 2 0.17 0.07 0.035 0.656 0.026 0.01 3 0.25 0.07 0.035 0.654 0.026 0.01 4 0.33 0.10 0.052 0.651 0.039 0.01 5 0.42 0.10 0.052 0.649 0.039 0.01 6 0.50 0.10 0.052 0.646 0.039 0.01 7 0.58 0.10 0.052 0.644 0.039 0.01 8 0.67 0.10 0.052 0.641 0.039 0.01 9 0.75 0.10 0.052 0.639 0.039 0.01 10 0.83 0.13 0.070 0.636 0.052 0.02 11 0.92 0.13 0.070 0.634 0.052 0.02 12 1.00 0.13 0.070 0.631 0.052 0.02 13 1.08 0.10 0.052 0.629 0.039 0.01 14 1.17 0.10 0.052 0.626 0.039 0.01 15 1.25 0.10 0.052 0.624 0.039 0.01 16 1.33 0.10 0.052 0.621 0.039 0.01 17 1.42 0.10 0.052 0.619 0.039 0.01 18 1.50 0.10 0.052 0.616 0.039 0.01 19 1.58 0.10 0.052 0.614 0.039 0.01 20 1.67 0.10 0.052 0.611 0.039 0.01 21 1.75 0.10 0.052 0.609 0.039 0.01 22 1.83 0.13 0.070 0.606 0.052 0.02 23 1.92 0.13 0.070 0.604 0.052 0.02 24 2.00 0.13 0.070 0.602 0.052 0.02 25 2.08 0.13 0.070 0.599 0.052 0.02 26 2.17 0.13 0.070 0.597 0.052 0.02 27 2.25 0.13 0.070 0.594 0.052 0.02 28 2.33 0.13 0.070 0.592 0.052 0.02 29 2.42 0.13 0.070 0.589 0.052 0.02 30 2.50 0.13 0.070 0.587 0.052 0.02 31 2.58 0.17 0.087 0.585 0.065 0.02 32 2.67 - 0.17 0.087 0.582 0.065 0.02 33 2.75 0.17 0.087 0.580 0.065 0.02 34 2.83 0.17 0.087 0.577 0.065 0.02 35 2.92 0.17 0.087 0.575 0.065 0.02 36 3.00 0.17 0.087 0.573 0.065 0.02 37 3.08 0.17 0.087 0.570 0.065 0.02 38 3.17 0.17 0.087 0.568 0.065 0.02 39 3.25 0.17 0.087 0.566 0.065 0.02 40 3.33 0.17 0.087 0.563 0.065 0.02 41 3.42 0.17 0.087 0.561 0.065 0.02 42 3.50 0.17 0.087 0.559 0.065 0.02 43 3.58 0.17 0.087 0.556 0.065 0.02 44 3.67 0.17 0.087 0.554 0.065 0.02 45 3.75 0.17 0.087 0.552 0.065 0.02 46 3.83 0.20 0.104 0.549 0.078 0.03 47 3.92 0.20 0.104 0.547 0.078 0.03 48 4.00 0.20 0.104 0.545 0.078 0.03 49 4.08 0.20 0.104 0.542 0.078 0.03 50 4.17 0.20 0.104 0.540 0.078 0.03 51 4.25 0.20 0.104 0.538 0.078 0.03 52 4.33 0.23 0.122 0.535 0.091 0.03 53 4.42 0.23 0.122 0.533 0.091 0.03 54 4.50 0.23 0.122 0.531 0.091 0.03 55 4.58 0.23 0.122 0.529 0.091 0.03 56 4.67 0.23 0.122 0.526 0.091 0.03 57 4.75 0.23 0.122 0.524 0.091 0.03 58 4.83 0.27 0.139 0.522 0.104 0.03 59 4.92 0.27 0.139 0.520 0.104 0.03 60 5.00 0.27 0.139 0.517 0.104 0.03 61 5.08 0.20 0.104 0.515 0.078 0.03 62 5.17 0.20 0.104 0.513 0.078 0.03 63 5.25 0.20 0.104 0.511 0.078 0.03 64 5.33 0.23 0.122 0.508 0.091 0.03 65 5.42 0.23 0.122 0.506 0.091 0.03 66 5.50 0.23 0.122 0.504 0.091 0.03 67 5.58 0.27 0.139 0.502 0.104 0.03 68 5.67 0.27 0.139 0.499 0.104 0.03 69 5.75 0.27 0.139 0.497 0.104 0.03 70 5.83 0.27 0.139 0.495 0.104 0.03 71 5.92 0.27 0.139 0.493 0.104 0.03 72 6.00 0.27 0.139 0.491 0.104 0.03 73 6.08 0.30 0.157 0.488 0.117 0.04 74 6.17 0.30 0.157 0.486 0.117 0.04 75 6.25 0.30 0.157 0.484 0.117 0.04 76 6.33 0.30 0.157 0.482 0.117 0.04 77 6.42 0.30 0.157 0.480 0.117 0.04 78 6.50 0.30 0.157 0.478 0.117 0.04 79 6.58 0.33 0.174 0.476 0.130 0.04 80 6.67 0.33 0.174 0.473 0.130 0.04 81 6.75 0.33 0.174 0.471 0.130 0.04 82 6.83 0.33 0.174 0.469 0.130 0.04 83 6.92 0.33 0.174 0.467 0.130 0.04 84 7.00 0.33 0.174 0.465 0.130 0.04 85 7.08 0.33 0.174 0.463 0.130 0.04 86 7.17 0.33 0.174 0.461 0.130 0.04 87 7.25 0.33 0.174 0.459 0.130 0.04 88 7.33 0.37 0.191 0.456 0.144 0.05 89 7.42 0.37 0.191 0.454 0.144 0.05 90 7.50 0.37 0.191 0.452 0.144 0.05 91 7.58 0.40 0.209 0.450 0.157 0.05 92 7.67 0.40 0.209 0.448 0.157 0.05 93 7.75 0.40 0.209 0.446 0.157 0.05 94 7.83 0.43 0.226 0.444 0.170 0.06 95 7.92 0.43 0.226 0.442 0.170 0.06 96 8.00 0.43 0.226 0.440 0.170 0.06 97 8.08 0.50 0.261 0.438 0.196 0.07 98 8.17 0.50 0.261 0.436 0.196 0.07 99 8.25 0.50 0.261 0.434 0.196 0.07 100 8.33 0.50 0.261 0.432 0.196 0.07 101 8.42 0.50 0.261 0.430 0.196 0.07 102 8.50 0.50 0.261 0.428 0.196 0.07 103 8.58 0.53 0.278 0.426 0.209 0.07 104 8.67 0.53 0.278 0.424 0.209 0.07 105 8.75 0.53 0.278 0.422 0.209 0.07 106 8.83 0.57 0.296 0.420 0.222 0.07 107 8.92 0.57 0.296 0.418 0.222 0.07 108 9.00 0.57 0.296 0.416 0.222 0.07 109 9.08 0.63 0.331 0.414 0.248 0.08 110 9.17 0.63 0.331 0.412 0.248 0.08 111 9.25 0.63 0.331 0.410 0.248 0.08 112 9.33 0.67 0.348 0.408 0.261 0.09 113 9.42 0.67 0.348 0.406 0.261 0.09 114 9.50 0.67 0.348 0.404 0.261 0.09 115 9.58 0.70 0.365 0.402 0.274 0.09 116 9.67 0.70 0.365 0.400 0.274 0.09 117 9.75 0.70 0.365 0.398 0.274 0.09 118 9.83 0.73 0.383 0.396 0.287 0.10 119 9.92 0.73 0.383 0.394 0.287 0.10 120 10.00 0.73 0.383 0.393 0.287 0.10 121 10.08 0.50 0.261 0.391 0.196 0.07 122 10.17 0.50 0.261 0.389 0.196 0.07 123 10.25 0.50 0.261 0.387 0.196 0.07 124 10.33 0.50 0.261 0.385 0.196 0.07 125 10.42 0.50 0.261 0.383 0.196 0.07 126 10.50 0.50 0.261 0.381 0.196 0.07 127 10.58 0.67 0.348 0.379 0.261 0.09 128 10.67 0.67 0.348 0.378 0.261 0.09 129 10.75 0.67 0.348 0.376 0.261 0.09 130 10.83 0.67 0.346 0.374 0.261 0.09 131 10.92 0.67 0.348 0.372 0.261 0.09 132 11.00 0.67 0.348 0.370 0.261 0.09 133 11.08 0.63 0.331 0.368 0.248 0.08 134 11.17 0.63 0.331 0.367 0.248 0.08 135 11.25 0.63 0.331 0.365 0.248 0.08 136 11.33 0.63 0.331 0.363 0.248 0.08 137 11.42 0.63 0.331 0.361 0.248 0.08 138 11.50 0.63 0.331 0.359 0.248 0.0B 139 11.58 0.57 0.296 0.358 0.222 0.07 140 11.67 0.57 0.296 0.356 0.222 0.07 141 11.75 0.57 0.296 0.354 0.222 0.07 142 11.83 0.60 0.313 0.352 0.235 0.08 143 11.92 0.60 0.313 0.350 0.235 0.08 144 12.00 0.60 0.313 0.349 0.235 0.08 145 12.08 0.83 0.435 0.347 --- 0.09 146 12.17 0.83 0.435 0.345 --- 0.09 147 12.25 0.83 0.435 0.344 --- 0.09 148 12.33 0.87 0.452 0.342 --- 0.11 149 12.42 0.87 0.452 0.340 --- 0.11 150 12.50 0.87 0.452 0.338 --- 0.11 151 12.58 0.93 0.487 0.337 --- 0.15 152 12.67 0.93 0.487 0.335 --- 0.15 153 12.75 0.93 0.487 0.333 --- 0.15 154 12.83 0.97 0.505 0.332 --- 0.17 155 12.92 0.97 0.505 0.330 --- 0.17 156 13.00 0.97 0.505 0.328 --- 0.18 157 13.08 1.13 0.592 0.327 --- 0.26 158 13.17 1.13 0.592 0.325 --- 0.27 159 13.25 1.13 0.592 0.323 --- 0.27 160 13.33 1.13 0.592 0.322 --- 0.27 161 13.42 1.13 0.592 0.320 --- 0.27 162 13.50 1.13 0.592 0.318 --- 0.27 163 13.58 0.77 0.400 0.317 --- 0.08 164 13.67 0.77 0.400 0.315 --- 0.09 165 13.75 0.77 0.400 0.314 --- 0.09 166 13.83 0.77 0.400 0.312 --- 0.09 167 13.92 0.77 0.400 0.310 --- 0.09 168 14.00 0.77 0.400 0.309 0.09 169 14.08 0.90 0.470 0.307 --- 0.16 170 14.17 0.90 0.470 0.306 --- 0.16 171 14.25 0.90 0.470 0.304 --- 0.17 172 14.33 0.87 0.452 0.303 --- 0.15 173 14.42 0.87 0.452 0.301 --- 0.15 174 14.50 0.87 0.452 0.299 --- 0.15 175 14.58 0.87 0.452 0.298 --- 0.15 176 14.67 0.87 0.452 0.296 --- 0.16 177 14.75 0.87 0.452 0.295 --- 0.16 178 14.83 0.83 0.435 0.293 --- 0.14 179 14.92 0.83 0.435 0.292 --- 0.14 180 15.00 0.83 0.435 0.290 --- 0.14 181 15.08 0.80 0.418 0.289 --- 0.13 182 15.17 0.80 0.418 0.287 --- 0.13 183 15.25 0.80 0.418 0.286 --- 0.13 184 15.33 0.77 0.400 0.284 --- 0.12 185 15.42 0.77 0.400 0.263 --- 0.12 186 15.50 0.77 0.400 0.282 --- 0.12 187 15.58 0.63 0.331 0.280 --- 0.05 188 15.67 0.63 0.331 0.279 --- 0.05 189 15.75 0.63 0.331 0.277 --- 0.05 190 15.83 0.63 0.331 0.276 --- 0.05 191 15.92 0.63 0.331 0.274 --- 0.06 192 16.00 0.63 0.331 0.273 --- 0.06 193 16.08 0.13 0.070 0.272 0.052 0.02 194 16.17 0.13 0.070 0.270 0.052 0.02 195 16.25 0.13 0.070 0.269 0.052 0.02 196 16.33 0.13 0.070 0.267 0.052 0.02 197 16.42 0.13 0.070 0.266 0.052 0.02 198 16.50 0.13 0.070 0.265 0.052 0.02 199 16.58 0.10 0.052 0.263 0.039 0.01 200 16.67 0.10 0.052 0.262 0.039 0.01 201 16.75 0.10 0.052 0.261 0.039 0.01 202 16.83 0.10 0.052 0.259 0.039 0.01 203 16.92 0.10 0.052 0.258 0.039 0.01 204 17.00 0.10 0.052 0.257 0.039 0.01 205 17.08 0.17 0.087 0.255 0.065 0.02 206 17.17 0.17 0.087 0.254 0.065 0.02 207 17.25 0.17 0.087 0.253 0.065 0.02 208 17.33 0.17 0.087 0.252 0.065 0.02 209 17.42 0.17 0.087 0.250 0.065 0.02 210 17.50 0.17 0.087 0.249 0.065 0.02 211 17.58 0.17 0.087 0.248 0.065 0.02 212 17.67 0.17 0.087 0.247 0.065 0.02 213 17.75 0.17 0.087 0.245 0.065 0.02 214 17.83 0.13 0.070 0.244 0.052 0.02 215 17.92 0.13 0.070 0.243 0.052 0.02 216 18.00 0.13 0.070 0.242 0.052 0.02 217 18.08 0.13 0.070 0.241 0.052 0.02 218 18.17 0.13 0.070 0.239 0.052 0.02 219 18.25 0.13 0.070 0.238 0.052 0.02 220 18.33 0.13 0.070 0.237 0.052 0.02 221 18.42 0.13 0.070 0.236 0.052 0.02 222 18.50 0.13 0.070 0.235 0.052 0.02 223 18.58 0.10 0.052 0.234 0.039 0.01 224 18.67 0.10 0.052 0.233 0.039 0.01 225 18.75 0.10 0.052 0.231 0.039 0.01 226 18.83 0.07 0.035 0.230 0.026 0.01 227 18.92 0.07 0.035 0.229 0.026 0.01 228 19.00 0.07 0.035 0.228 0.026 0.01 229 19.08 0.10 0.052 0.227 0.039 0.01 230 19.17 0.10 0.052 0.226 0.039 0.01 231 19.25 0.10 0.052 0.225 0.039 0.01 232 19.33 0.13 0.070 0.224 0.052 0.02 233 19.42 0.13 0.070 0.223 0.052 0.02 234 19.50 0.13 0.070 0.222 0.052 0.02 235 19.58 0.10 0.052 0.221 0.039 0.01 236 19.67 0.10 0.052 0.220 0.039 0.01 237 19.75 0.10 0.052 0.219 0.039 0.01 238 19.83 0.07 0.035 0.218 0.026 0.01 239 19.92 0.07 0.035 0.217 0.026 0.01 240 20.00 0.07 0.035 0.216 0.026 0.01 241 20.08 0.10 0.052 0.215 0.039 0.01 242 20.17 0.10 0.052 0.214 0.039 0.01 243 20.25 0.10 0.052 0.213 0.039 0.01 244 20.33 0.10 0.052 0.212 0.039 0.01 245 20.42 0.10 0.052 0.211 0.039 0.01 246 20.50 0.10 0.052 0.210 0.039 0.01 247 20.58 0.10 0.052 0.209 0.039 0.01 248 20.67 0.10 0.052 0.209 0.039 0.01 249 20.75 0.10 0.052 0.208 0.039 0.01 250 20.83 0.07 0.035 0.207 0.026 0.01 251 20.92 0.07 0.035 0.206 0.026 0.01 252 21.00 0.07 0.035 0.205 0.026 0.01 253 21.08 0.10 0.052 0.204 0.039 0.01 254 21.17 0.10 0.052 0.204 0.039 0.01 255 21.25 0.10 0.052 0.203 0.039 0.01 256 21.33 0.07 0.035 0.202 0.026 0.01 257 21.42 0.07 0.035 0.201 0.026 0.01 258 21.50 0.07 0.035 0.200 0.026 0.01 259 21.58 0.10 0.052 0.200 0.039 0.01 260 21.67 0.10 0.052 0.199 0.039 0.01 261 21.75 0.10 0.052 0.198 0.039 0.01 262 21.83 0.07 0.035 0.198 0.026 0.01 263 21.92 0.07 0.035 0.197 0.026 0.01 264 22.00 0.07 0.035 0.196 0.026 0.01 265 22.08 0.10 0.052 0.196 0.039 0.01 266 22.17 0.10 0.052 0.195 0.039 0.01 267 22.25 0.10 0.052 0.194 0.039 0.01 268 22.33 0.07 0.035 0.194 0.026 0.01 269 22.42 0.07 0.035 0.193 0.026 0.01 270 22.50 0.07 0.035 0.193 0.026 0.01 271 22.58 0.07 0.035 0.192 0.026 0.01 272 22.67 0.07 0.035 0.192 0.026 0.01 273 22.75 0.07 0.035 0.191 0.026 0.01 274 22.83 0.07 0.035 0.190 0.026 0.01 275 22.92 0.07 0.035 0.190 0.026 0.01 276 23.00 0.07 0.035 0.190 0.026 0.01 277 23.08 0.07 0.035 0.189 0.026 0.01 278 23.17 0.07 0.035 0.189 0.026 0.01 279 23.25 0.07 0.035 0.188 0.026 0.01 280 23.33 0.07 0.035 0.188 0.026 0.01 281 23.42 0.07 0.035 0.188 0.026 0.01 282 23.50 0.07 0.035 0.187 0.026 0.01 283 23.58 0.07 0.035 0.187 0.026 0.01 284 23.67 0.07 0.035 0.187 0.026 0.01 285 23.75 0.07 0.035 0.186 0.026 0.01 286 23.83 0.07 0.035 0.186 0.026 0.01 287 23.92 0.07 0.035 0.186 0.026 0.01 288 24.00 0.07 0.035 0.186 0.026 0.01 Sum = 100.0 Sum = 14.3 Flood volume = Effective rainfall 1.19(In) _ times area 200.7(Ac.)/[ (In)/(Ft.) ] _ 20.0(Ac.Ft) Total soil loss = 3.16(In) Total soil loss = 52.787(Ac.Ft) Total rainfall = 4.35(In) Flood volume = 869487.9 Cubic Feet Total soil loss = 2299396.4 Cubic Feet Peak flow rate of this hydrograph = 48.572(CFS ------------------------------------------------- --------------- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 24 - H O U R S T O R M R u n o f f H y d r o g r a p h -------------------------------------------------------------------- Hydrograph in 5 Minute intervals ( (CFS) ) -------------------------------------------------------------------- Time(h+m) Volume Ac.Ft Q(CFS) 0 12.5 25.0 37.5 50.0 ----------------------------------------------------------------------- 0+ 5 0.0004 0.06 Q I I I 0+10 0.0025 0.31 Q I I I 0+15 0.0074 0.71 Q I I I 0+20 0.0150 1.09 Q I I I 0+25 0.0246 1.40 VQ I I I 0+30 0.0363 1.71 VQ I 0+35 0.0498 1.96 VQ I I 0+40 0.0643 2.11 VQ I I 0+45 0.0795 2.21 VQ I I 0+50 0.0955 2.32 VQ I 0+55 0.1127 2.50 V Q I 1+ 0 0.1316 2.75 V Q I 1+ 5 0.1519 2.94 V Q I 1+10 0.1721 2.94 V Q I 1+15 0.1915 2.82 V Q I 1+20 0.2102 2.71 V Q I 1+25 0.2286 2.67 V Q I I 1+30 0.2469 2.66 V Q 1+35 0.2652 2.66 V Q 1+40 0.2835 2.65 V Q 1+45 0.3018 2.66 V Q 1+50 0.3203 2.69 V Q 1+55 0.3397 2.81 V Q I I 1 1 2+ 0 0.3604 3.02 V Q 2+ 5 0.3824 3.19 V Q I 2+10 0.4050 3.28 V Q 2+15 0.4280 3.33 V Q 2+20 0.4512 3.37 V Q I I 1 1 2+25 0.4746 3.40 V Q 2+30 0.4981 3.42 V Q 2+35 0.5220 3.47 IVQ 2+40 0.5468 3.61 IVQ 2+45 0.5731 3.82 IV Q 2+50 0.6007 4.00 EV Q 2+55 0.6289 4.10 IV Q 3+ 0 0.6576 4.16 IV Q 3+ 5 0.6865 4.20 IV Q 3+10 0.7157 4.24 IV Q 3+15 0.7451 4.27 IV Q 3+20 0.7747 4.29 IV Q 3+25 0.9044 4.31 IV Q I 3+30 0.8342 4.33 IV Q I 3+35 0.8641 4.34 IV Q I 3+40 0.8941 4.35 IV Q I 3+45 0.9241 4.36 IV Q I 3+50 0.9545 4.40 IV Q I 3+55 0.9857 4.53 IV Q I 4+ 0 1.0183 4.74 1 VQ I 4+ 5 1.0522 4.92 1 VQ I 4+10 1.0867 5.01 I V Q I I 4+15 1.1216 5.07 I V Q 1 1 1 1 4+20 1.1570 5.14 1 V Q I I 4+25 1.1935 5.30 1 V Q I I 4+30 1.2315 5.52 1 V Q I I I 4+35 1.2709 5.72 1 V Q I I I 4+40 1.3110 5.83 1 V Q I I I 4+45 1.3516 5.89 I V Q I I I 4+50 1.3927 5.97 I V Q I I I 4+55 1.4349 6.13 I V Q I I I 5+ 0 1.4788 6.37 1 V Q I I 5+ 5 1.5236 6.50 I V Q I I I 5+10 1.5675 6.38 I V Q 1 I I 5+15 1.6091 6.04 I VQ E I I 5+20 1.6489 5.78 I VQ I I I 5+25 1.6886 5.76 I VQ I I I 5+30 1.7291 5.89 I VQ I I ! 5+35 1.7708 6.05 1 VQ I I 5+40 1.8137 6.23 I VQ I I 5+45 1.8581 6.46 V Q I I 5+50 1.9039 6.64 1 V Q I I 5+55 1.9503 6.75 1 V Q I 1 I 6+ 0 1.9972 6.81 1 VQ I I 6+ 5 2.0447 6.89 1 VQ I I 6+10 2.0932 7.05 1 VQ I E ! 6+15 2.1433 7.27 1 VQ I { 6+20 2.1947 7.47 1 VQ I I 6+25 2.2469 7.58 1 V Q 1 I 6+30 2.2995 7.64 1 V Q I 6+35 2.3527 7.73 1 V Q I 6+40 2.4071 7.89 1 V Q I 6+45 2.4630 8.13 1 V Q I I 1 1 6+50 2.5204 B.32 I VQ I 6+55 2.5785 8.43 1 VQ I 7+ 0 2.6370 8.51 1 VQ I 7+ 5 2.6960 8.56 1 VQ I 7+10 2.7553 8.61 1 VQ I 7+15 2.8148 8.64 1 VQ I 7+20 2.8748 8.71 1 VQ I 7+25 2.9357 8.85 1 V Q I 7+30 2.9982 9.08 1 VQ I 7+35 3.0622 9.29 1 VQ I 7+40 3.1278 9.52 1 VQ I 7+45 3.1952 9.79 1 VQ I 7+50 3.2644 10.04 1 V Q I 7+55 3.3353 10.30 1 V Q I I 8+ 0 3.4082 10.58 1 V Q I B+ 5 3.4831 10.68 1 V Q I 8+10 3.5607 11.27 1 V QI 8+15 3.6417 11.76 1 V QI 8+20 3.7256 12.18 1 V QI 8+25 3.8112 12.42 1 V Q1 8+30 3.8978 12.58 1 V Q 1 8+35 3.9854 12.72 1 V Q 8+40 4.0745 12.94 1 V Q I I 8+45 4.1655 13.21 1 V Q I I 8+50 4.2583 13.48 1 V Q I I 8+55 4.3530 13.74 1 V Q I I 9+ 0 4.4497 14.04 1 V IQ I I 9+ 5 4.5485 14.35 1 V1Q I 9+10 4.6501 14.75 1 VIQ I 9+15 4.7552 15.26 1 VI Q 9+20 4.8634 15.71 1 VI Q 9+25 4.9742 16.09 1 VI Q I 9+30 5.0874 16.45 1 V Q I 9+35 5.2029 16.77 1 V Q I 9+40 5.3205 17.08 1 V Q I 9+45 5.4405 17.41 1 V Q I 9+50 5.5625 17.72 1 IV Q 9+55 5.6865 18.01 1 IV Q 10+ 0 5.8128 18.34 1 IV Q I 10+ 5 5.9394 18.38 1 IV Q I 10+10 6.0613 17.69 1 1 V Q I ! I 10+15 6.1741 16.39 1 1 VQ I 1 ! 10+20 6.2793 15.27 1 1 Q I I 10+25 6.3805 14.69 1 IQV I I 10+30 6.4795 14.38 1 IQV I 10+35 6.5782 14.32 1 IQ V I 10+40 6.6798 14.76 1 IQ V I 10+45 6.7875 15.64 1 1 QV I I 10+50 6.9005 16.40 1 1 Q I I 10+55 7.0160 16.78 1 1 QV I 11+ 0 7.1329 16.97 1 QV 11+ 5 7.2505 17.07 I 1 QV 11+10 7.3679 17.05 I 1 QV 11+15 7.4843 16.91 I 1 QV 11+20 7.6000 16.79 I 1 Q V 11+25 7.7153 16.75 1 1 Q V 11+30 7.8305 16.73 1 1 Q V 11+35 7.9452 16.65 1 1 Q V 11+40 8.0582 16.40 1 1 Q V 11+45 8.1683 16.00 1 1 Q V 11+50 8.2763 15.68 1 1 Q V 11+55 8.3838 15.61 1 1 Q V 12+ 0 8.4919 15.70 1 1 Q V I 1 1 12+ 5 8.6013 15.88 1 1 Q V I I 12+10 8.7129 16.21 I 1 Q v I I 12+15 8.8281 16.73 I 1 Q V I I 12+20 8.9479 17.39 I 1 Q V I I 12+25 9.0739 18.30 1 Q V I I 12+30 9.2081 19.48 1 1 Q V I I I 12+35 9.3511 20.77 I Q V I ! 12+40 9.5057 22.45 I I Q VI 12+45 9.6753 24.63 I 1 QI I 12+50 9.8587 26.63 I I VIQ I 12+55 10.0537 28.31 I I v Q I 13+ 0 10.2602 29.98 I I V Q 13+ 5 10.4807 32.02 I I IV Q I 13+10 10.7250 35.47 I I IV Q I 13+15 11.0027 40.32 I I I v I Q 13+20 11.3090 44.47 1 1 V I Q E 13+25 11.6323 46.94 1 1 V I Q I 13+30 11.9668 48.57 I 1 V I Q 1 13+35 12.3007 48.49 ! 1 V I Q 1 13+40 12.6053 44.22 l I I V I Q 1 13+45 12.8550 36.25 I I I V QI 1 13+50 13.0579 29.46 I I I Q V I 13+55 13.2380 26.15 I I Q V I 14+ 0 13.4068 24.51 I I QI V 1 1 14+ 5 13.5715 23.93 I I QI V I 14+10 13.7446 25.13 I I Q V I 14+15 13.9366 27.87 I I 1 Q V 1 1 14+20 14.1444 30.18 I I 1 Q V I 14+25 14.3575 30.93 I I 1 Q V I 14+30 14.5699 30.84 I I 1 Q VI 14+35 14.7815 30.72 1 I 1 Q VI 1 14+40 14.9937 30.81 1 1 1 Q V 14+45 15.2070 30.98 1 Q V 14+50 15.4211 31.08 1 Q V 14+55 15.6335 30.84 1 Q IV 1 15+ 0 15.8418 30.26 1 Q IV 1 15+ 5 16.0460 29.65 I 1 Q I V 1 15+10 16.2460 29.03 1 1 1 Q I V I 15+15 16.4407 28.27 1 1 I Q I V I 15+20 16.6303 27.54 I I I Q I V 1 15+25 16.8147 26.78 I I IQ I V 1 15+30 16.9934 25.94 I I Q I V 1 15+35 17.1646 24.86 I I QI I v I 15+40 17.3207 22.67 I I Q I I V I 15+45 17.4543 19.39 I Q I I V I 15+50 17.5691 16.68 1 1 Q 1 1 V 1 15+55 17.6745 15.30 1 1 Q I I V 1 16+ 0 17.7750 14.58 1 IQ I I V 1 16+ 5 17.8700 13.80 I IQ I I V 1 16+10 17.9546 12.29 QI I I V 1 16+15 18.0241 10.09 1 Q I I I V 1 16+20 18.0807 8.22 Q I I I V 1 16+25 18.1297 7.11 Q I I I V 1 16+30 18.1739 6.41 1 Q I V 1 16+35 18.2143 5.86 1 Q I I V 1 16+40 18.2508 5.31 1 Q I I I V 1 16+45 18.2835 4.74 1 Q I I I V 1 16+50 18.3130 4.28 1 Q I I I V 1 16+55 18.3401 3.95 1 Q I I V 1 17+ 0 18.3656 3.69 ! Q I I V 1 17+ 5 18,3901 3.56 1 Q I I V 1 17+10 18.4151 3.63 1 Q I I V I 17+15 18.4419 3.89 1 Q I I I v 1 17+20 18.4703 4.12 1 Q I v 1 17+25 18.4991 4.19 1 Q I v 1 17+30 18.5281 4.21 1 Q v 1 17+35 18.5574 4.24 1 Q I I I v 1 17+40 18.5867 4.27 1 Q I I I v 1 17+45 18.6162 4.28 1 Q I I v 1 17+50 18.6455 4.25 1 Q I I v 1 17+55 18.6740 4.13 1 Q I I v 1 18+ 0 18.7011 3.93 1 Q I I I v 1 18+ 5 18.7271 3.78 1 Q I I I v 1 18+10 18.7526 3.70 1 Q I I I v 1 18+15 18.7778 3.66 1 Q v 1 18+20 18.8028 3.63 1 Q v 1 18+25 18.8277 3.61 1 Q I v I 18+30 18.8525 3.60 1 Q V I 18+35 18.8769 3.56 1 Q I I V I 18+40 18.9005 3.42 1 Q I I v 1 18+45 18.9227 3.21 1 Q I I v 1 18+50 18.9434 3.01 1 Q I V I 1B+55 18.9626 2.79 1 Q I v 1 19+ 0 18.9800 2.53 1 Q I v 1 19+ 5 18.9961 2.34 IQ I v 1 19+10 19.0121 2.33 IQ v 1 19+15 19.0290 2.45 IQ v 1 19+20 19.0469 2.60 1 Q I I I v 1 19+25 19.0660 2.76 1 Q I I I v 1 19+30 19.0865 2.98 1 Q I v 1 19+35 19.1080 3.13 1 Q I v 1 19+40 19.1293 3.10 1 Q I I I v 1 19+45 19.1496 2.95 1 Q I I I v I 19+50 19.1688 2.78 1 Q I I I v 1 19+55 19.1867 2.60 1 Q I I v 1 20+ 0 19.2030 2.37 IQ I I v 1 20+ 5 19.2182 2.20 IQ I I v 1 20+10 19.2335 2.22 IQ I I I v 1 20+15 19.2497 2.36 IQ I I v 1 20+20 19.2668 2.49 IQ I v I 20+25 19.2843 2.54 1 Q I I v 1 20+30 19.3020 2.57 1 Q I I v 1 20+35 19.3198 2.58 1 Q I I I v 1 20+40 19.3377 2.59 1 Q I I I v 1 20+45 19.3556 2.60 1 Q I I I v 1 20+50 19.3734 2.56 1 Q I I I v 1 20+55 19.3903 2.47 IQ I v 1 21+ 0 19.4060 2.27 IQ I v 1 21+ 5 19.4206 2.13 IQ I v 1 21+10 19.4355 2.16 IQ I E v 1 21+15 19.4514 2.31 IQ I I I v 1 21+20 19.4680 2.42 IQ I I I VI 21+25 19.4843 2.36 IQ I I I VI 21+30 19.4993 2.18 IQ I I I VI 21+35 19.5135 2.06 IQ I I I VI 21+40 19.5280 2.10 IQ I I I VI 21+45 19.5436 2.27 IQ I I I VI 21+50 19.5600 2.38 IQ I I I vi 21+55 19.5760 2.33 IQ 1 1 1 Vi 22+ 0 19.3909 2.16 IQ I I I VI 22+ 5 19.6050 2.04 IQ I I VI 22+10 19.6194 2.09 IQ I I VI 22+15 19.6349 2.26 IQ I I v1 22+20 19.6513 2.37 IQ I I VI 22+25 19.6673 2.32 IQ I VI 22+30 19.6821 2.15 IQ I I I vI 22+35 19.6959 2.00 IQ I I I vl 22+40 19.7092 1.93 IQ I I I VI 22+45 19.7222 1.89 IQ I I I VI 22+50 19.7351 1.87 IQ I I I VI 22+55 19.7478 1.85 IQ I I I v1 23+ 0 19.7604 1.83 IQ I I I VI 23+ 5 19.7730 1.82 IQ I I I VI 23+10 19.7854 1.81 IQ I I vI 23+15 19.7978 1.80 IQ I I VI 23+20 19.8102 1.80 IQ I I vI 23+25 19.8225 1.79 1Q I I VI 23+30 19.8348 1.79 IQ I I VI 23+35 19.8471 1.78 IQ I I v1 23+40 19.8593 1.77 IQ I I I vl 23+45 19.8715 1.77 IQ I I I VI 23+50 19.8837 1.77 IQ I I VI 23+55 19.8959 1.77 IQ I I VI 24+ 0 19.9081 1.77 IQ I I vI 24+ 5 19.9198 1.70 IQ I I I vI 24+10 19.9298 1.46 IQ I I I VI 24+15 19.9370 1.05 Q I I VI 24+20 19.9419 0.70 Q I I VI 24+25 19.9454 0.52 Q I I VI 24+30 19.9483 0.41 Q I I I Vl 24+35 19.9506 0.33 Q I I VI 24+40 19.9525 0.27 Q I VI 24+45 19.9540 0.23 Q 1 VI 24+50 19.9553 0.19 Q I I I VI 24+55 19.9564 0.16 Q I VI 25+ 0 19.9573 0.13 Q I VI 25+ 5 19.9580 0.11 Q I VI 25+10 19.9587 0.09 Q 1 I VI 25+15 19.9592 0.07 Q I VI 25+20 19.9596 0.06 Q I VI 25+25 19.9599 0.05 Q I VI 25+30 19.9602 0.04 Q I VI 25+35 19.9604 0.03 Q I I I VI 25+40 19.9605 0.02 Q I VI 25+45 19.9606 0.02 Q I VI 25+50 19.9607 0.01 Q I I VI 25+55 19.9607 0.00 Q I I VI Project Report t - te: Sheet of ?roject: Job No.: RE: BY: Contact: Phone: Ro Posg Q1 D A-Pi - "61% 17 aOOp 5 C. t S H7t Der-oc S`N3 f' 5 7A 115 A-C- U nr►� � e a �o y , GS r o�c r.rTT Rt jb.57 Co.os Rfi� rZ:fvT+- FOR- �►r''' p�'uEcr d , a1 r��Nrt►lL sr �� (FrZoM iQWV% 1r2� 15 s �� t'J"s� t . ur�l gS�sQ) 6a ir r (U,4 ' C�,�lo. i� b.-73 WILSON M/KAMI CORPORATION CONEULTING ENGINEERING SERVICES lw9 CORPORATE PARK,SUITE 100•IRVINE, CA 92606 (949) 679-0090 FAX (949)679-0091 STREET CAPACITY CALCULATIONS ' 4 r •` ~ 1� LINE SURE UNE iC R LONE LYOTT VARIES 6' �5' FUTURE R S EX p• SW LDT A WNL'ixMI""><N" ?'' + �''�` 3 PAD D 52 PAD-12711 IL `` PAD=1273.6 ` SECTION C—C 1 SECTION D-D r1272.r FS i I' i ;� ro� gyp. _`ft 1 IIl 1 NPLi CDT Ezl WALL R Elc VARIS 10' //L��j// LOT AH ,�// J ` ! ,d� A(l I rl �j /7 I 1 / A y/ i / // 6✓/C` i��`<\` PRPAD .-'2 SL I f 53 +� 27G MIN I W PAD=127z.5 �1!1` ! / fz��,� ? i U) s / 479 �- 9/� SECTION E-E 32 100.00, PAD-12ns / J/ ,� /l7 �� 46 31 PM.f272.1 � i liE/ — Q/ �—' 0• - �>.� �,�\ PAO=1276.8 r --- — ------1----------- 30 - I� PAD-127M i6.7 1S 1 / ETC 2.3% WHIE BIRCH 2.0s '� ',�, `\ + I6 f't� 12b9.6 FS -�- ) �8 -N '}-'Q 12123 / -----50 _—_ 5 00" 21 O L=1-7B \ ✓/ / +'6' 29 / / /j, -------- — -- --- _ D / +5 I I I I 27 28 I� 22 PAD2=12389.B I 1 25 PAD-t273.7 PAD=1274.424 I I w a 26 wp PAD-127OLS g PAD-171.8 g PAD-t272.8 NOTE (A +Q SEE LOT MANAGE DETAIL ON SHEET z PAD G FOR PAD GRADING W I I i +�9 II �' J Ii 9 I' `�� / + I I �- ' LEGEND C / 70 L01 NUMBER I 5 50.00, I 50.00" 50.00' 53.35' 6131' S5.0T / / PAD= PAD ELEVATION iC TOP OF CURB 'L 7 / / OCR BEGIN CURB RETURN - RACT 30L'NOARY .�__ ECR END CURB RERIRN LOT RAI' —-'' — ———— 3.41 GRAPHIC SCALE C > a e O BT 1E 1 inm= zo Tl ENGINEERNG GEOLOGIST SOILSENGNEER OWNER REVISIONS: ir PREPARED UNDER SUPERVISION OF: SCALE: WILSON MIKAMI CITY OF LAKE ELSINORE RRJLES ���7 SOILWORKS,INC. SOILWORKS,INC. Ydmwm SUMMERLY,LLC ��y�,, F VY CORPORATION S EARTH SCIENCES GROUP EARTH SCIENCES GROUP RO.BOX 85104 fi t�NO 499B94 DIP. 9-30-14 DATE DATE. 3 PETERS CANYON T:949-679-OD90 ROUGH GRADING PLAN SFlE£F S 5 350 FISCHER AVENUE 350 FlSCHER AVENUE SAN DIEGO,CA 92186-5104 W 44BB4 p THESE PLANS HAVE BEEN RENEWED FOR COMPLIANCE WITH THE IRVINE 06 926 F:949-679-0091 OF J COSTA MESA,CA 92626 COSTA MESA CA 92626 T(619)794-1252 * '•' - * APPROPRIATE CONDITIONS OF DEVELOPMENT AND/OR CITY AND ■ MAIW DLsaeP,Kx BY APPR. DATE . «�� .� THE STATE LAWS,AND PERMIT CAN BE ISSUED. WARn BDKH K W N E-170.DD.1279229. BRASS MC W CDRCRL7E POST 7Y NORM OF T TRACT NO. 31920-12 nLE No. PH: 714-666-5600 PH: 714-668-5600 F(619)336-3010 •p W"Atd .M49CTIOR OF EBRRDCR7 STREV W MSSON nNL 77'EAST of DE CDffMM OF IASSIDII TRAI DESIGNED BY: WMC DRAWN BY: LTMC BASS OF BEA G: LOTS 22-32, 46-47, 52-54 wrw.so9WorksinC.tom CHECKED BY: S.WILSON Z.CT MANAGER S AILSON KEN SEUMALO RCE 56915 E)P.6-30-13 CITY ENGINEER DALE CTO16 OF GfAEAL SMW'BB ANWO TSATV��57REC Ab CFIIDI SIHET�iIO,Eq pRn 57RE �ME w U M � T O z N O a o W LO rn � 0LO � CD � d p Ul co Q 2 N L N U W co 0 co ao LLJ CV J U O o � J Z Lea w 3 o r �I .fV L., O o 0 N (1) O O m Y W O . . Q' �/��t Z VJ co Lq o �Q Z L `" � m ro O a Q s U C) (7i LLJ '^ W CD Ln 0 CO 3 0 z co Cr ti O W i[J N in V) s in N W� CV CL C2 OLO Nr- N N � a ** RESULTS OF IRREGULAR CHANNEL ANALYSIS ** CALCULATIONS BASED ON MANNINGS EQUATION WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS ---------------------------------------------------------------------------- (c) Copyright 1983-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 ************************** DESCRIPTION OF STUDY ************************** * COMBINED FLOW AT SECTION A-A. (10-YEAR) * BASED ON SURVEY SHOTS OF EX STREET AT STA 58+70 MISSION TRAIL * BY KAM 051818 ************************************************************************** TIME/DATE OF STUDY: 08:55 05/14/2018 ---------------------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1.84 2 2.00 0.76 3 32.00 0.63 4 32.10 0.00 5 34.00 0.18 6 82.00 0.96 SUBCHANNEL SLOPE(FEET/FEET) = 0.015000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 . . . . .. . .. .. . . . . . . . . . . . . . . . . . . ... . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . .. . . . .. . . . . . SUBCHANNEL FLOW(CFS) - 157.5 (y�CS� S( k SUBCHANNEL FLOW AREA(SQUA EE - 26.83 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 5.871 SUBCHANNEL FROUDE NUMBER = 1.777 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 79.10 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.34 ---------------------------------------------------------------------_--------------- ---------------------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 2 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 82.00 0.96 2 107.00 0.44 3 110.00 0.11 4 120.00 0.74 5 132.00 1.74 SUBCHANNEL SLOPE(FEET/FEET) = 0.015000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .�. . . . .. . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . .. SUBCHANNEL FLOW(CFS) 79.0 1 P�67 btD6 SUBCHANNEL FLOW AREA(SQUARE FEET) = 13.39 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 5.901 6 SUBCHANNEL FROUDE NUMBER = 1.764 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 39.44 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.34 -----------------------------------------------------------------------------_ ---------------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 229.10 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 236.57 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WAT�RFACE ELEVATION. . . . . . . . . . . . . . . . . . . . .. . . ... . . 0.94 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. ----------------------------------------------------------------------------- 7 ** RESULTS OF IRREGULAR CHANNEL ANALYSIS ** CALCULATIONS BASED ON MANNINGS EQUATION WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS (c) Copyright 1983-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 ************************** DESCRIPTION OF STUDY ************************** * COMBINED FLOW AT SECTION A-A (100-YEAR) * BASED ON SURVEY SHOTS OF EX STREET AT STA 58+70 MISSION TRAIL * BY KAM 041618 ************************************************************************** TIME/DATE OF STUDY: 09:13 05/14/2018 ---------------------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1.84 2 2.00 0.76 3 32.00 0.63 4 32.10 0.00 5 34.00 0.18 6 82.00 0.96 SUBCHANNEL SLOPE(FEET/FEET) = 0.015000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 .SUBCHANNELFLOW(CFS) 1268.61 tve&7 SI SUBCHANNEL FLOW AREA SQUARE FEET = 42.92 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 4.468 SUBCHANNEL FROUDE NUMBER = 1.563 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 80.70 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.53 ---------------------------------------------------------------------------- ------------------------------------------------------------------------------ * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 2 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 82.00 0.96 2 107.00 0.44 3 110.00 0.11 4 120.00 0.74 5 132.00 1.74 SUBCHANNEL SLOPE(FEET/FEET) = 0.015000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 SUBCHANNEL FLOW(CFS) - 1� 4e 6d r Sfl . . . . . . . . . . . . . . . . . . . . . SUBCHANNEL FLOW AREA(SQUARE FEET) = 19.16 6 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 7.174 SUBCHANNEL FROUDE NUMBER = 1.874 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 42.08 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.46 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 402.80 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 402.84 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WA SO FACE ELEVATION......... . . . . . ... .... . .... . .. NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. ---------------------------------------------------------------------------- 7 V LL CD z CD �--� O O w z o + I I l,_I T n o w 0 u � cY ¢ _ o C1 ' a (/) N (!1 I..L C) H� X O Ul W N CD Cl) a- W I .� o J az v) N O LL O � Z O to V) J L J Z M LLIII II [V7 L� V) � �� o �- O Lil XLLJ O m r Z cOr LO OR I Li w LJ W O U Lo d� O) Op W Z C14 LL.--j U l� W M L� a m f�/1 j V) O OO � or� U o == Y Lw o r~� w a cn oa CO w >-� o \ 3 0 0 o� z m a W LO G W 0 0 \ e t WLU C7 5C1 N n ** RESULTS OF IRREGULAR CHANNEL ANALYSIS ** CALCULATIONS BASED ON MANNINGS EQUATION WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS (c) Copyright 1983-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 ************************* DESCRIPTION OF STUDY *+*+* * ******* *** «*** * WEST SIDE FLOW AT SECTION B-B (10-YEAR) * STA 56+50 MISSION TRAIL * BY KAM 051818 TIME/DATE OF STUDY: 09:47 05/14/2018 ---------------------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 0.87 2 10.00 0.67 3 10.01 0.00 4 12.00 0.16 5 60.D0 1.12 SUBCHANNEL SLOPE(FEET/FEET) = 0.010000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 . . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . .. . . .. SUBCHANNEL FLOW(CFS) = 33.2 SUBCHANNEL FLOW AREA(SQUARE FEET) = 7.96 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 4.168 SUBCHANNEL FROUDE NUMBER = 1.390 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 28.50 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.28 ------------------------------------------------------------------------------- ---------------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 32.90 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 33.17 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION. . ... . . . . . . . . . . . . . . . . . . . . . ... 0.67 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. ----------------------------------------------------------------------------- ** RESULTS OF IRREGULAR CHANNEL ANALYSIS ** CALCULATIONS BASED ON MANNINGS EQUATION WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS (c) Copyright 1983-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 xxxxxxx+++++++++++++++++xx DESCRIPTION OF STUDY xxxxxxxxxxxxxxxxxxxxx+++++ * EAST SIDE FLOW AT SECTION B-B (10-YEAR) * BASED ON SURVEY SHOTS OF EX STREET AT STA 56+50 MISSION TRAIL * BY KAM 051818 TIME/DATE OF STUDY: 09:50 05/14/2018 ------------------------------------------------------------------------------ * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1.12 2 25.00 0.61 3 28.00 0.28 4 75.00 1.12 SUBCHANNEL SLOPE(FEET/FEET) = 0.010000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 .. . . . . . .... . . .. . . . . . . . .. . .. . . . . . . . .. . . . . . . . .. . . . . . . . . . . .. .. . . . . .. . . . . . . . . . . . SUBCHANNEL FLOW(CFS) = 79.1 SUBCHANNEL FLOW AREA(SQUARE FEET) = 18.07 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 4.487 SUBCHANNEL FROUDE NUMBER = 1.432 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 59.25 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.30 _--_---__---------------------------------------------------------------------- ------------------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 79.00 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 79.09 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION. . . . . . . . . . . . . . . . . . . . . .. . . . . . . 0.95 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. ** RESULTS OF IRREGULAR CHANNEL ANALYSIS ** CALCULATIONS BASED ON MANNINGS EQUATION WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS (c) Copyright 1983-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 ************************** DESCRIPTION OF STUDY ************************** * WEST SIDE FLOW AT SECTION B-B (100-YEAR) * STA 56+50 MISSION TRAIL * BY KAM 051818 ************************************************************************** TIME/DATE OF STUDY: 09:59 05/14/2018 -------------------------------------------_---------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1.35 2 10.00 0.87 3 20.00 0.67 4 20.01 0.00 5 22.00 0.16 6 70.00 1.12 SUBCHANNEL SLOPE(FEET/FEET) = 0.010000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 .. . . . . . . .. . . . . . . . . . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . SUBCHANNEL FLOW(CFS) = 64.5 SUBCHANNEL FLOW AREA(SQUARE FEET) = 14.25 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 4.524 SUBCHANNEL FROUDE NUMBER = 1.425 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 45.50 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.31 ------------------------------------------------------------------------------ --------------------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 63.60 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 64.47 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION. . . . . . . . . . . . . . . . . . . . . . . . . .. . . 0.85 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. ------------------------------------------------------------------------------- ------------- ** RESULTS OF IRREGULAR CHANNEL ANALYSIS ** CALCULATIONS BASED ON MANNINGS EQUATION WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS ------------ (c) Copyright 1983-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 ************************** DESCRIPTION OF STUDY * EAST SIDE FLOW AT SECTION B-B (100-YEAR) * BASED ON SURVEY SHOTS OF EX STREET AT STA. 56+50 MISSION TRAIL * BY KAM 051818 TIME/DATE OF STUDY: 10:02 05/14/2018 ---------------------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 1.12 2 25.00 0.61 3 28.00 0.28 4 75.00 1.12 SUBCHANNEL SLOPE(FEET/FEET) = 0.010000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 .. . . . . . .. ... .. . . . . . . . . . . . . . . . .. .. . . . . .. . . . .. . . . . . . . . . . . .. ... . . . . . . . . . .. . . . . . SUBCHANNEL FLOW(CFS) = 135.0 SUBCHANNEL FLOW AREA(SQUARE FEET) = 26.66 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 5.065 SUBCHANNEL FROUDE NUMBER = 1.476 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 72.90 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.37 ----------------------------------------------------------------------------- -------------------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 134.40 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 135.03 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION. . ... . . . . . . . . . .. .. . . .. . . . . . . . 1.10 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. ------------------------------------------------------------------------------- VJ N \ LL 01) CD Z � T x W T QV J 0 LL Q " N U � U W Q r � T 4� N Q z GO z C3 z W V) N U LU x o LLJ a ' Cl) M rn B ti U 0 m_Z 3 � 3 dam" z \ " w O U co �o v� L O v dmmi Q� U d J w U- W a o Cl) a w o ` I \ m \ N U�rya lbo � ` I wNN W U�aK�1 0 WWL 2 O CN QIJi Q'�N gyp o (N b�� w O_' ON-SITE PARKING LOT CAPACITY CALCULATIONS ** RESULTS OF IRREGULAR CHANNEL ANALYSIS ** CALCULATIONS BASED ON MANNINGS EQUATION WITH ALL DIMENSIONS IN FEET OR FEET AND SECOND$ (c) Copyright 1983-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 DESCRIPTION OF STUDY *xxx:***xx***xxx*xxx***xxx * MAX FLOW CAPACITY IN THE SOUTH PARKING LOT GUTTER f * SECTION A-A * BY KAM 060118 TIME/DATE OF STUDY: 09:23 06/02/2018 ---------------------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 0.96 2 0.10 0.46 3 14.50 0.17 4 16.00 0.00 5 17.50 0.17 6 46.00 0.74 7 46.10 1.24 SUBCHANNEL SLOPE(FEET/FEET) = 0.010000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 ............................................................................ SUBCHANNEL FLOW(CFS) = 178.2 SUBCHANNEL FLOW AREA(SQUARE FEET) = 26.34 SUBCHANNEL FLOW VELOCITY(F£ET/SEC.) = 6.766 SUBCHANNEL FROUDE NUMBER = 1.577 SUBCHANNEL FLOW TOP-WI➢TH(FEET) = 46.04 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.57 ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 174.00 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 178.18 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION............................. 0.96 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. ---------------------------------------------------------------------------- --------------------------------------------------------------------------- ---------------------------------------------------------------------------- ** RESULTS OF IRREGULAR CHANNEL ANALYSIS ** CALCULATIONS BASED ON MANNINGS EQUATION WITH ALL DIMENSIONS IN FEET OR FEET AND SECONDS (c) Copyright 1983-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1557 Analysis prepared by: Wilson Mikami Corporation 3 Peters Canyon, Suite 10 Irvine CA 92606 949 679-0090 ************************** DESCRIPTION OF STUDY ************************** * MAX FLOW CAPACITY IN THE EAST PARKING LOT GAMO(L- * SECTION A-A (5Py0.0%Z) * BY KAN 053018 ************************************************************************** TIME/DATE OF STUDY: 08:51 05/30/2018 ---------------------------------------------------------------------------- * ENTERED INFORMATION FOR SUBCHANNEL NUMBER 1 : NODE NUMBER "X" COORDINATE "Y" COORDINATE 1 0.00 0.96 2 0.10 0.46 3 14.50 0.17 4 16.00 0.00 5 17.50 0.17 6 46.00 0.74 7 46.10 1.24 SUBCHANNEL SLOPE(FEET/FEET) = 0.012000 SUBCHANNEL MANNINGS FRICTION FACTOR = 0.015000 . . . . . . . .SUBCHANNEL FLOW(CFS) - 195.2 SUBCHANNEL FLOW AREA(SQUARE FEET) = 26.34 SUBCHANNEL FLOW VELOCITY(FEET/SEC.) = 7.411 SUBCHANNEL FROUDE NUMBER = 1.727 SUBCHANNEL FLOW TOP-WIDTH(FEET) = 46.04 SUBCHANNEL HYDRAULIC DEPTH(FEET) = 0.57 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- TOTAL IRREGULAR CHANNEL FLOW(CFS) WANTED = 190.00 COMPUTED IRREGULAR CHANNEL FLOW(CFS) = 195.18 ESTIMATED IRREGULAR CHANNEL NORMAL DEPTH WATER SURFACE ELEVATION. . . . . . . . . . . . . . . . . . . . . . . . . .. . . 0.96 NOTE: WATER SURFACE IS BELOW EXTREME LEFT AND RIGHT BANK ELEVATIONS. ---------------------------------------------------------------------------- �o,.q6) "� l`�' l�s "I�av_ CauTs1"rr2 c-k-> CAW, l�10 cis Td C14 er-SU%'P'UG 17 zwuG C4-6. I7) Project Report -)ate: Sheet of Project: Job No.: RE: By: Contact: Phone: IDCTE12-Mltf- ?i-At` FL0\,., t-C)ckTfC)I\J A� 'MAPP THle rLC-WLIt-Ilz A-, rtHF Ekk(,H PCIP7- (N ZIAIE ClUn"eq(z �kA �:*%0,tvA it- -TKO SfT- C7IC.N p':- 'T PAP-K- 1tirl (L OvI�ZTur'PING T+\� t3�CiL1�1q- Lov �C� Nr 11� pAfZ�lNt (y� IS FcoW t f-2-� -Fc r"2-C- M tax PC N�'N6- D,Fp-, = I369,s? 0,5H F . ii tc r1-C-r It N P'3 LOC. I LO )t L Lo o Y- /a ( = 17 6 rt41 S i_ 004'r1UN COO- Bt~ M OIWLUu k� P6 C = 3 �3S +(Go t ©.y I c C C)NI INN WILSON M/KAM/ CORPORATION 7 CONSULTING ENGINEERING SERVICES / 9 CORPORATE PARK, SUITE 100•IRVINE, CA 92606 (949)679-0090 FAX (949) 679-0091 Project Report )ate: Sheet of Project: Job No.: RE: By: Contact: Phone: C)\( Cc\Z-r Law L-acW-TIC-Vi Oa i'rAP) -pc t k) r I tj G OT"Tvir Q- a U7- 8 P-L trove Pt3 lw i ,�,j Par iNG LOT P I-P-- TV I MhPACTiW G Rx» = 12)9-S,S7 7tt� stecT�oN Fez L--OCAT-iot-i 2 Wk0, t_oCYL AS (=oL-Lc.wj �1KaK = 0.6q e : 3•a3S t GIN� •+ Q_ya�� ({��N� s-a�) C _ 3 .235 act .bad-4.S6 L.. 3<a6 spa WILSON M/KAM/ • CORPORATION w CONSULTING ENGINEERING SERVICES 9 CORPORATE PARK, SUITE 100•IRVINE,CA 92606 (949) 679-0090 FAX (949) 679-0091 Project Report -)ate: Sheet of Project: Job No.: RE: By: Contact: Phone: f f-A k eu w qT t✓-4,ipr(?Low f s F ()N-s ne OPA Vl t t —,-, 4C-Li`kf pR`riot-k f',J 1� is Pc'k PT T C IS 6-s- S `VOF DPI �r�E=toW L�Vflrion�_ rt TH iS PG 143'T we�rtF� tStU— 0VIirm? cv2(6 Ft S c N_ TA i S CAN S;7 �A C,fJ A S I�G r1 e Im irS'TIE I) LP I W (I N w r iTL L- c9 a FT . Q�✓1 A k 04p i--TIA P n T6 I A cr(N G tl l\-A 1N& PAD ) 5 # L \-c-t i4 - t w &t---- p,,r to(6-kk PAP-( 30 rA f\x p,qr-T 14_ G 7.a 4 - 6 5_ Q =C- i-L LIA 3/:) ct=s WIL80N • M/KAMI • CORPORAT/ON CONSULTING ENGINEERING SERVICES w9 CORPORATE PARK, SUITE 100•IRVINE,CA 92606 (949)679-0090 FAX (949) 679-0091 CATCH BASIN CALCULATIONS MISSION TRAIL APARTMENTS CATCH BASIN CALCULATIONS INTERIM CONDITION CATCH BASIN#1 (CB NO.4)W=23.64'(OFFSITF FLOW-BY) Total W for 7 Grates is 23.64' (2' 11-3/8"for 1"grate and 3' 5-3/8"for additional 6 grates) Worksheet for Combination Inlet On Grade -- CB#1 Project Description Solve For Efficiency Input Data Discharge 268.60 ft'/s Slope 0.01280 ft/ft Gutter Width 2.00 ft Gutter Cross Slope 0.08 tuft Road Cross Slope 0.02 ft/ft Roughness Coefficient 0.015 Local Depression 4.00 in Local Depression Width 4.00 ft Grate Width 2.00 ft Grate Length 23.64 ft Grate Type P-50 mm(P-1-7/8") Clogging 14.00 Rio GLc Gc3 s'ti G i=-ACTC z l=o>z JCL-Tti►'l�z Curb Opening Length 23.64 ft ( yTES �c' fS W T1Acl� Options �/c-l�7V_ yNSSvt-� Is1 6,P-ty N+�S ties% GcyC�c�1+-�Cy_ 5cy Calculation Option Use Both c t I C o Grate Flow Option Exclude None ce� Results Efficiency 76.33 % Intercepted Flow 205.02 W/s Bypass Flow 63.58 ft'/s Spread 54.53 ft Depth 1.21 ft Flow Area 29.85 ft2 Gutter Depression 0.12 ft Total Depression 0.45 ft Velocity 9.00 fus Splash Over Velocity 283.02 ft/s Frontal Flow Factor 1.00 Side Flow Factor 0.72 Grate Flow Ratio 0.10 Equivalent Cross Slope 0.03168 ft/ft Active Grate Length 20.33 ft Length Factor 0.02 Total Interception Length 167.67 ft Bentley Systems,Inc. Haestad Methods Solution Center Bentley FlowMasler V8i(SELECTseries 1) [08.11.01.031 4/16/2018 1:17:01 PM 27$lemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-756.1666 Page 1 of 2 A ffa tehr>wetl Ira iwd '• ` '`• - ti' -6� �- .6- -�- -ion 'afia � ; �w f+rls 4 tNw c'O -See Standard Drawing r. M H 259 and Note 5 Section A-A 41 A ------------------ V1 U v � ul 1 n� 1 n. PLAN 1�- N.T.S. N. pcotfr •cmi o A connection Pie �i (SEE STANDARD DRAWING No.L0202 y; NOTE I(OFOR APPROPRIATE LOCAL DEPRESSION, ;3, 1 See Standard Drawing No.C8105 DE1'AL OF WKL g" For Detail of Angie ei Anchor. aN 7 STEEL LIST to Slop* v .,�:�} For frame and i raling ;;f. • r:, details and anchorage ; ;F. > I S •M 2 12 t; See Standard Drowing '%'•..! P. No.C B 104 DWEI Wi1OF y-2 12 , 2 3 g EINOD J• ;; Slope to oullet in all direUior>s (D �. ^[--• � fr1{nilrltxn r t A� Embedment SfCTIO,N-,A A , _ A' GRATE TYPE 0 34�I R.C.F.C. STD. CB 104 am 00 32 CAL.TRANS STD. D77--8 00 0Ln CC J 11 4 r Q`ypF E SS 1 Oh W, �C 4<,P2 RIVERSIDE COUNTY FLOOD CONTROL AND w NO.32336 WATER CONSERVATION DISTRICT CATCH BASIN a Exp. 12-31-04 APPROVED By NO. 4 sr v �-�-- vrF c1v1� Ep cniEr ENGINEER — STANDARD DRAWING NUMBER C8101 OF OAIA DATE April5 2004 R.C.E.NO-32336 SHEET tOF 2 NOTES FOR CATCH BASIN NO, 4 1. Dimensions: , Unless otherwise specified. V = 3.5 feet. S - A inches. T = 6 inches, if V is 4 feet or less. R - 3/4 inch. T = 8 inches, if V is between 4 feet 16N and 8 feet. RCS 6.4 D T = 10 inches, if V is 8 feet or over. W = 2 feet, 11-�3/8 inches for one grating. � � y Add 3 feet, 5-•3/8 inches for each H co-*rt5 �3•� additional grating. S CsP-#"'-S Hike-up shall be parallel to plane of gutter - to IFS �o,lq slope 3/4 inch to 1 foot. Slope of floor parallel with curb shall be -7 GR�'tFS 1 in 12. 2. Concrete shall be Class "A" Portland Gwent Concrete (6.0 Sack). 3. The reinforcing steel shall be Number 4 deformed bars. Clearance shall be 1-1/2 inches from top of slab. See standard drawing C8106 and note 3. 4. The surface of all exposed concrete shall conform to slope, grade, color, finish, and scoring in the existing of proposed curb and walk adjacent to the basin. The basin floor shall be given a tight wood float finish. Curvature of the lip and sidewalls at the gutter opening shall not be made by plastering. The outlet pipe shall be trimmed to final shape and length before the concrete is poured. 5. Steps: 3/4 inch plain round galvanized steel steps are required as follows: If V is 4.5 feet or less, no steps are regaired. If V is more than-4-5 feet, and not more than 5.0 feet, install one step 12 inches above floor of basin. If V is more than +5.0 feet, install steps 16 inches apart, with the top step 6 inches below the top of grating. All steps shall be b inches clear from the wall, and anchored not less than 4 inches in gall of basin. ��2 O I am 00 zz 00 00 Ln I- �J 0 V_ t Q�OF E SS/O,y W1 Q , c^Z RIVERSIDE COUNTY FLOOD CONTROL AND CATCH BASIN Q i Z WATER CONSERVATION DISTRICT w 3 No.32336 `M Exp. 12-31-04 n AaRRovEo er: N 0. 4 *qfe Crol�-\Fo��* CHEF ENGINEER STANDARD DRAWING NUMBER CB101 OF CAl DATE:_Apd1 S-2004 R.C.E.NO.32336 SHEET 2 OF 2 2010 STANDARD PLAN D778 Y- FA J fm e,mMFNp 6�P GFmr P v a m�mm•Om m 0,p zo Q m ~ J W u5 ^_ \� C3 4Zz NNN NNNN Ng�' zW SSSR 1 pa[ W <F a�y _ _?�� ------y L V U N N��� .- M 9ZI/,A.•.W n� H� v NN N _ _ J¢V Q u¢Wi w a SyS�y$N I �U• >d a7 N F 1� 10.'J (TY c T° N b F „I N O lyl ~ u p U C W Y n V u O V E. V p OLL �¢ a'S�.W U. w 2 oui Fc� o a �z Oy m a W z m V LL Z G ` m tl pO elO m� L ip o..° z : m LLL a� ¢¢ m �� to g r o mm� J a� n n J tY \ O O O L 4 Y t E m N I n n ¢¢ JI �O Y •I v Ld+Lp F ayy X. o'Nr x LLOLL O n�0 Z N� NN° N J O � 44 N TO u�1 mg l C 4 N X•� Q ¢ J 1 0 l0 L mOL�pn1 as o\o m Z ° O C K n 4 6 4 Xx om i"IM � «�; N -XC Q U N iuw rviv iv iv Lg Y �m Cc to/ fj Lu8 m ix- u j 2 qOa ma L O OOiL-O~ 20¢4 MNMNnN S a .1'o°m oar °c3 a,Fo Ntoo� •-•-w� VH E�n^pp0 w+" F c4i 1p�O F�mv R Kyc4a N O \\ / I �000000 °�Yo ne c�b� F nu¢M�s II— m O00©D �oNanm�i>� din e.¢o '+� a A 9 tl0,b 'SN[3YdS + M M f �YNOISdO-%89f 3dA1 � NO 58YE S tl]3 =/If am i r arc u n �'v: �'noi m u L O^ J J LI •� n °u WW - x a0 20 Ft-pCp Y•H - ON 4 �pm OL u�I a° 1 ^. yz Y N N 6 O �V N m n 4 OOOOOO ¢W �eF I—f°d HW $ i ¢F"•F OOOOOOO O� HAI `tt 4 WQ C pQ 26 W W l04 p0 F F $m0 p «Ili „R- 000000 m 4¢ YO o o : o o ui a OOOOOCOO °a Tm- C 3 LJOOO�^-^O L_J "W,[1•_�•�.y! OOQ©L_J©O �F�p iT f gj of I �' NIT- 3Ll] I L W4U. o O©OOO e i ��'ro c i u e J Ins- II I z N LLomam xm :ry aoz ^ Q U. a. ryW ¢ r F zwwm < N VI • f f �¢ j4mWJ m LLWWZ4 9 •^arZOpR it pr C� 1 II rG NVI 6°mc P m� JaF4 4 4 mN¢v pm N,n .a VKI OW02W mP O LaLZIFNa mS m SmO F TO 32W< WGa WIOm- ZN jgm¢m m 00 L N YL FL OZW T Y (O� WZ J� WW4 C LL LY G� O GQ wGOmj i I¢m 4m ULL ^=�WQ WS Pm 4 P 9 U� P N �Vld4 mF1¢.iF XYy -�dh OfW- X O'ta-o ♦I~OO a PT : UGH - - Of¢]rDU N¢ O C x� x TT C 0\r OOU m OF wmZ - p 4 i-F I r4L 000000 W as ¢ �OOOp p0� o w w w = z ¢rW- 0000 a O00 v�i LL<¢a p�¢� .m.m 0�4 4 OOOOOu 000 t ¢o¢ I•¢'p¢ x ## ° a==N Nm OOOCJC1OC71I+��yLO # WIC �xZ'! _ C-IL7000001�, f� I w COO00000 O ' ��_r 0000000 O I Vcc # ��000000000 0o0000000QQ 000000000 xoN„9 ONIptldS 3 xog,91 m t I SV31N33„S NO S13A18 9 «„ YIWStltl9 ssoua IU!N„b L m r J 165 W 2 z Z ) V) Ld O j 7 u c �§k( ® § 7& E §§ �( k \) a Uj o { -- - -�V) C', k� LLI }LLI\�La 0 UJ�/d �� *«U- U k �2 2b k#�` �� z 6 U \q =2X $22. 60° )�° ° O • Ek � « .§\§/ 0j§\ °\/ V) k �W I zu o�$z ® o � w m§� ir 22 moo R2 ® G / $ 2gZZ, 82GQ Pik �,22 / •-- - /-� U 09U9 3--W WOO Too §§)\ * w6»$ ro\S§S 02wz 2wmm§ « Gk2, o 2 I` Pz &�� S!! o� .o - % §§\U) k/), ��0 2kk� k - k $ LLI e 2\ 0 §§G§ {§§ *(n)/ ) j / % 2 ( e2�U !3i k\§§ ( (2/ wB _ � k§ \ § 39 \ 2\ 4 ( ` o _ Of�( z Li i--c4l }§ Li $ 2§\ Lo )§ \oL w 7� . % §k � � ' ` ® - » Li | �) ` + G \ �� z & � . \U ) ) ) % # - o� | ttD § u \ z G . ƒ 2 E § % ® LIP § v k � --- - --g z V) $ o � m 2 ui z § l) ' 3§} / , | § / k0 2 �¥ § I(v<-)) �; iL 31 L-- -- } � §wo7 0 ko Jj k \ � - --�-�� k / k § ƒ & 0 a \ § § % » » § ƒ ° § � \ ! \ § -0 �l 0 z \ § Li § � il 17D a_4 "Fr- act--wrzr- I � I I � I i I 1 I 061 � I La �GNs� Ncc, ��pTl� fea� r-T / I f R8 CC,w, SAT — 1 FLAP I I � I I ` I I tX*a7 PIL/N' ce - ter 0,C) I I •d I I I I v i I � CATCH BASIN#2 W=28'(OFFSITE SUMP) Max Depth= HP(fl)—LP (fl) HP on site = 1270.27 FL LP in CB at sta. 55+66.73 = 1269.98 TC- 1.00= 1268.98 FL Max Depth=1.29' (1270-27-1268.98) Basin Opening= normal C.F. + LD (4")= 1.00' (see CB 105 Note 8) »»SUMP TYPE BASIN INPUT INFORMATION«« --------------------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 114.50 BASIN OPENING(FEET) = 1.00 DEPTH OF WATER(FEET)= 1.29 »»CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET)= 28.00 ---------------------------------------------------------------------- CATCH BASIN#3 W=10' (OFF-SITE SUMP) Max Depth= HP(fl)—LP (fl) HP on site = 1270.27 FL LP at sta. 54+36.11= 1269.97 TC- 1.00 = 1268.97 FL Max Depth=1.30' (1270-27-1268.97) Basin Opening= normal C.F. + LD (4")= 1.00' (see CB 105 Note 8) »»SUMPTYPE BASIN INPUT INFORMATION«« ---------------------------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 41.00 BASIN OPENING(FEET)= 1.00 DEPTH OF WATER(FEET) = 1.30 »»CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 9.94 CATCH BASIN#4(ON-SITE SUMP) See attached Chart 3 for Grate inlet capacity in sump condition CATCH BASIN#5 (ON-SITE SUMP) See attached Chart 3 for Grate inlet capacity in sump condition CATCH BASIN#6(ON-SITE SUMP) »»SUMP TYPE BASIN INPUT INFORMATION«« ---------------------------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS)= 3.30 BASIN OPENING(FEET)= 0.83 DEPTH OF WATER(FEET)= 0.83 »»CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 1.41 USE W=7.0' ' 5.0 INLET CLOGGING The operation of an Inlet in Figure 5.1 is subject to the clogging due to urban debris that is varied with respect to location and season.To be conservative,a clogging factor of 50%is recommended for a single grate and 10%for a single curb-opening inlet. Ctub Flow -� Grate Clog%= 5010 25% 12.5% Figure 5.1 Decay of Inlet Clogging Percentage For an inlet with multiple units as shown in Figure 5.1, it is observed that the clogging effect decays from the front to the last inlet unit as shown in Figure 5.2.As recommended, the clogging factor, Clog%,decays as the number of inlet units increases (Guo 2006). c 11 .h t 3 Y Figure 5.2 Decay of Debris Amount on Grates As a result,the clogging factor for multiple inlets in serial is equal to the total clogging percentage divided by the number of inlet units as(Guo 2000c): i=N Cg = N(C+eC+eZC+e3C+.........+eN-�C)= N le" (5.1) =1 in which Cg=multiple-unit clogging factor, C=single-unit clogging factor,e=decay ratio less than unity,and N=number of inlets. Table 5.1 is the comparison between the observed and recommended clogging factors using e=0.25 for curb opening inlet and a=0.5 for grate inlet. 24 Table 5.1 Clogging Factors for Inlet Design Number of Unit Curb Op enin Inlet Grate Inlet Observed Predicted Observed Predicted with with e=0.5 e=0.25 1.00 0.12 0.12 0.50 0.50 2.00 0.08 0.08 0.35 0.38 3.00 0.05 0.05 0.25 0.29 4.00 1 0.03 1 0.04 0.20 0.23 The interception capability of an on-grade inlet is proportional to the inlet wetted length, and an in-sump inlet is proportional to the inlet opening area. Therefore, the effective length of an on- grade inlet is calculated as: Le =(1—Cg)L (5.2) in which L=total wetted length, Cg clogging percentage selected for the number of inlet units, and Le=effective (unclogged) length. Similarly, the effective opening area of an in-sump inlet is calculated as: .4, =(1—Cg),4 (5.3) in which A=total opening area, and A.=unclogged opening area. 7 0. 1w g 25 CATCH BASIN#4(ON-SITE SUMP) See attached Chart 3 for Grate inlet capacity in sump condition CATCH BASIN#5 ON-SITE SUMP See attached Chart 3 for Grate inlet capacity in sump condition CATCH BASIN#6(ON-SITE SUMP) »»SUMP TYPE BASIN INPUT INFORMATION«« ---------------------------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS)= 3.30 BASIN OPENING(FEET)= 0.83 DEPTH OF WATER(FEET) = 0.83 »»CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET)= 1.41 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- USE W=7.0' CATCH BASIN#7(ON-SITE SUMP) »»SUMP TYPE BASIN INPUT INFORMATION«« ---------------------------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS)= 1.30 BASIN OPENING(FEET) = 1.00 DEPTH OF WATER(FEET) = 1.00 »»CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET)= 0.42 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- USE W=7.0' ' EXHIBIT 3 -to s GRATE OPENING•RATIO 4 6 •P-1.7/8-4 0.8 P-1-7/8 0.9 N A3 5 • P-1-1/87 n 4 Rtliculine -0.8 - -Curves vane 0.35 300 tilt-bar 0.34 3 - Tested S/ D 2 �i W. � 0.s 0.6 t1 0.5 CURB G 0.4 0.3 Q a —� e } A_CLEAR OPENING AREA O P. 2W.4 (WITH CURB) P=s(W+L) (WITHOUT Ct BASUBSTRACT__BARWIDHS 01 2 3 4 5 6 B IO 20 30 '40 50 60 80 100 I 1 (13Y+1 Cgy e 5 DISCHARGE Q (CFS) i • CHART 3. Grate Inlet capclty in sunup condltlons.. a C�1 WIo_ V�N,E �_Z!?� t7oN tti1 fr j 25 � � . Project Report Date: Sheet of ?roject: Job No.: RE: By: Contact: Phone: L�1Ecv- c Psc m-e or- -iC1-TrI G 21 cK-rc� wk 6N T s( 0 NttsslUr4TIz r.-5 Fxesz��� 31�s�N t��Y CJkeACI-rr TO 32�c•1;t�a� (,0.8 01'i FcfC l STeNCs- �V(��I �': �3tfc�S, �N� �l�'� �Jv1_T�NG W�E 11'` Y�t� C�� F31`1S►C" Ft2o,, TtAee L-S PG FLOi . cuSe to -i2 LV50G 0LrPvt Fl��-' i37a-0a Cuti"x qa, -rd ME 69-1G1C-E i�-e.vA-qluty Te 'PMlr- �= 0. Ao aZ�N0 µ t&4 Pees eLeQ & CL- bsr-b 0�3 Sv;WI�` Uee e4Q)-� ia76.s8 TC (T C� cN Sum " S 'ts) , to-7o.1� 'rC LU IDT�k- TI f-6 IN = ak_b FT Ae a- r ( S�7 a I -o'r C G=7b' ) o_Ga PT t�k`) CAW(Ty = QM - 0'� WILSON M/KAM/ • CORPORATION CONSULTING ENGINEERING SERVICES w9 CORPORATE PARK, SUITE 100•IRVINE,CA 92606 (949) 679-0090 FAX (949)679-0091 F., yel: y ..e #t t 7. 76 .IN PLO AS r — C f PUMP DISCHARGE CALCULATIONS Project Report Date: Sheet of Project: Job No.: RE: By: Contact: Phone: V ►`�l� k7 P-t�-1 N T (N`I� (� � �-C V Li4-.'—L G N VOL-L uE To IDP-fliN 13Astr+ 3J2- p_qa lac-t=r Ac-FT I &c► }71zo;�cs P (7v MP oeal-Wr S AT 12a GP+`1 x 7.4b041. � C. SF- " � 27 Cf•S l8 2qJ F'f'�/(�. a� C'sI 'r �` 6osrC l$. l�0 u2S W/1-50N MIKAMI • =RPORAT/ON CONSULTING ENGINEERING SERVICES w9 CORPORATE PARK, SUITE 100•IRVINE, CA 92606 (949) 679-0090 FAX (949)679-0091 Suction: Total Suction Lift=Static+Friction Discharge: Total Discharge Head=Static+Friction Total Dynamic Head (TDH)=Total Discharge Head+Total Suction Head SUCTION Inlet Elevation 1252 ft Pump Elevation 1265.7 ft Static Lift 13.7 ft Friction Head Pipe size, d 2 inches Pipe length 30 ft 90 Deg Elbow 12 ft Total Length, L 42 ft Pipe material PVC C= 150 PVC Flow Rate,Q: 122 gpm Hazen-Williams Equation HL=10.4397*(L)*Q^1.85/(C^1.85 x d^4.8655) HL(friction)= 10.26 ft Total Suction Lift= 23.96 DISCHARGE Pump Elevation 1265.7 ft Discharge Elev 1255.4 ft Static Head 10.3 ft Friction Head Pipe size,d 3 inches Pipe length 86 ft Expander Coupling 3 ft 90 Deg Elbow 12 ft 45 Deg Elbow 4 ft Total Length, L 105 ft Pipe material PVC C= 150 PVC Flow Rate,Q: 122 gpm Hazen-Williams Equation HL= 10.4397*(L)*Q^1.85/(C^1.85 x d^4.8655) HL(friction)= 3.57 ft Total Discharge Head= 13.87 PSI= 16.37692 psi r-1 E M �/� u ViI .._.,..._.__._n..._....,....,...�.._,....��...�:.... .�_....,_. _.... _ _. CL u dam' > j (n Cn U) a' N LoQ _, .. n.�.�_._ U..... CO O LP N N N N T' Rt v . co CD i co cM Q o N T c >_ QmU0 M a� o ?� w Q � T O 1 LO N � O � O N N c .� L O � W CD ter— o Q. v o Ln > N cc O U t-- O o CIO 0 0 * dO' N O coO � 3o N O T- T T � u .r..z.y.-►.a_^Ydy.'T r"Y"'�. r-�r-v-l--4- M m N N r O Ln O A E 4 u PBOH 12101 U k L7 ttl I ' LO Q_ I c I 66 . 55 a- oQI�I �I I 2 65 0 ,3 w� I Cn QLo Loll QD f~ LO CL � I J u `:, it N •�� 1 1 � f O I I LO Z I I LO ------------ I I � I I a f I I a I CL f i I LLI � f I I J I LO ILL o ' o } b, CL j LI t `o I O Z t ; i m J i U z I ' Q Q t I I I I I ' I I t I I 4 a rl .-I 0 r•1 N Z v RCO O O z z a E� d KC W w o 0 0 gar a wo co z0 CD o < H u) cD W I 'A N O W W W N 00 U)0 00 N f O �O O I N ifl N N u) v) a-! D0 .70 po O O yqO ,qy4 ,❑y O W C P4 Q a W O n a ao W N W r �+ ut U?N O u) 14 w N C i C7 N z H E. ^ m M c Z I O H N O H ?+ .I z 0) H )i W^ > ❑ O O O 1 O H Z,O z O •z O 03 22 > 0 H u) H ry Z Z E H H n', H ❑ u) r7 u) U H u) 3a E+ W N (.7 O UU w o W w u) W a N IE-I rn P4 s4 U •-I U ri U rl U rl L) U E z w � cn En En u)i C7 rtC x I W P4 I L4 P4 rn0 W F W x El EOM Eon EO E(D r) 6c H .4 a O .1 a o %o a o a o a o u) EnPO 3 PH., a�i Ga, W W yr 53 I- W W r r W H P4' PO4 W POG H Ian H Lo H I i H two "tD H W Pa a 04 OD 04 N N N N N 3 x W W �H P4 oo L7 O U a' e-I U # O x O 0 -k 0 0 H v) A,' E W M) < z 0 z 0 ,Z,o Z O ,Z o W H N �*+ 0 O w 0 0 0 0 0 0 O w O w x ❑ a Z 0: PG H H . H . H • M H D O r<C q E O E m El Ch El LO x E N u) H 5C v) KC o < ) 4 w 9 oo a 4 o0 a rn U E E+o EO E0 EOOE (z> W P4 v) u) a W u) u)H m H cn r-1 z En'-I H x W H H W a ❑ 3 O F E E H x H a � Eao ai xo xo wo W a m m RC dU in KC cn EE/) U) o� >+� W� d` w� a•11 O C4 H I I I rn a) P4 •J o4 La 14 L7 u)43 D Z a H H H FC FC FC a 'S W rl N M H H H H H N 2 m U H -v 0 z z '� N M c• N R Fy W W W 7R' C) °z ~ a a ,H� z zz z z z v, t, Is U) z z z z z W z z Z w w w w aA w 1 w a FC o a KC a a a a a H U U U W w W W W w W w H x Q 4 x 0 cm) (Z) O O O CD C. O O �D # .,i U # x Y a f x � dx w w w w w w w w "# a a a a a a a 0, w N x O N >1 x W H H W H W rK ri H ri H " .I a # Z a E. f I a — l a — l a — 1 — 1 — l a — l a — 1 a — 1 a — 1 a a i f + O O O O O O O O O O O O O O O O O O m x a a x O O o O O O O O O O O O O O O O O O x N N f E. + f x I x I I I I I I I I I I + 4] . I H x O 1 0 O I O O 1 0 0 1 O 1 O I O O I O O I O O I O O I O m + "¢ in -4 x 0 o O O O O o o O O O O O O O O O O -i # Id* O O O O O O O O O O O x N H {w x N + W I x I # 10 N x # N x CO 0 1 x 1 1 1 1 1 1 I I 1 I x Y [=1 x 0 O O O Cl O O p O O # Lo O u1 O u) o ul u) N O u7 O u1 O u7 O u7 O x b1 Z x N I N H N W N N N W N r4 N W N H N W f •ri 1C # O O O q O O O o — I t i I I I I + R, I x I I I I I I I I I I + O ¢f # H L' Q# u) u) o Ul o M o o u) O N O u) O to O in o x Y x x 3 'O 0 N O N O W O O N H N ri N r1 N I N 5 f x O•.-I La # x r1 O x # W I Z # I I 1 I I I I I I I x r-I — 1 Z -N $ I 1 1 1 1 1 1 1 1 4, 10 + O O O �o CD. O Cl) m x U q N x u) O u) O u) O u) u u) .-) I u7 W ul N u) 01 V/ M x -A a) u # N N N N N N N N N N + 4-) R, a x i m r r x -$4 tll O# x U Q I w x I I I I I 1 I I I I -- — x I X + I 1i) I In I W 1 1 1 O 1 O 1 W I .--I I W 5 !-I f O N O N O N O O o rl O r-1 O .� O W O W O (a # W W (1 f O O O O CD O O O O O 7+ x 04.-i ❑+ 1.-1 v H # W # E # rn w f y + I 0) IL I I I I I I I i I I o a x 1 x 1 1 1 1 1 1 1 1 — 1 1 -ri # 9,H # N O N 01 m u) M M W 0 r-I u) O N r H 0) N f0 W x IS W + W O r-I O1 M 01 01 W In lD N m Qt r u7 N M m r7 x f4 W x N H # 0 •O M: # to %0 (q 0) m 01 W W N M v' u) O # W 0 # N N N N N N N N N N Z a x ri H H r-I H H ri W c-I H U• ri a # 1 # I I I I I I I I I I Hm ; ————— — — — — — —— — — — — — — — — — — N m W x 1 d x r I C• r I m r I N r I r I H I m m I M m I O M 1 01 m I u1 'O 5 f c• m yr O v u7 H N m .-m -W N N 1 10 u) M 10 Q cc En + W 16 1:4 x V• u) 1n , Ln N r N m H LI a H + 4) 4) # O O O Cl) Q' M v N M N M N N > S Ck x H O m r # I N# I I 1 I I ! I I 1 I U tx f7G # I # W I O 1 O 1 O 1 O I m I W 1 v 1 -4 1 01 I Z W Q # # U.) u) Ifl u) IA M M E+ to f Ch •w a x x N I I W W ui D x -- -- — — — in H 0. # 1 # r k r l r k r l r 1 r l r l r [ r l r l m W * # N N N N N N N N N N ttl H Pt: k OI E. m a [+, x U + U 9 m1, + 10 a W .-1 x x a FL• OD 'A 1 f I 1 1 — I I I I I E F-I W LO x I x r I O I m I o I r I u) 1 0 1 m I r l lD I H O# f V' u) O �o %0 O (n w v 6) ►1 FE w x 14 x 10 10 131 1 a' 0) p• 01 H Co b1 1]4 C9 x N > f O E. a # N d + L• m m rn r m 0 N N >•1 FI• x W + u) u) LO u7 N u) 1n m to m a 2 W % :N: W # N N N N N N N N N N O U >,+ + ri rl ri r-1 .ti r-I ri r-1 ,••I r•I H lA FOx I + I I I I I 1 I I I 1 (1) ❑ # -N r I O 1 —m 1 O I O 1 N 1 N I m 1 O 1 R' H f f'.. # w to O l0 l0 O O (Z' 'A W it # N N N W 1D W H ri W H x x # I f I I I I 1 I I I 1 I x 1 T f O I O I O I O I M I M I OD I N I r l NI 4)f O W O ri O O O O O 01 N 61 to 01 M 01 OD 01 $ # i-1 m x -W0 d• 0 r O m m m u) M In m u) O u) r u) CA x kI y o it o O W r 1` r r r .$ # N Q1 r-i f u) O 1n O u) N r r r C• m ITO -WN V' N d• # > r-1 N x u) u'k 1f1 u) u) W u) u) 1D W tD [L x q W # N N N N N N N N N N + 'A ri H W H W H H r-I W f 1 U x I I I I I I I I I I a # — — ^ — — I ICI f 0 1 .-1 ri 1 Q1 0 1 0 0 1 r 1 U r 1 N m I u) a• I 01 M I r O• I w 41 x (', x 0 N N r O O O O H O O O N M W O ID 19 N r01 N O O o 0) O O O 0 .3 O r-1 .-I M v v dl In C W . . . . . . . . . . . . . . . . . x Y r-I f o O OO D1 O 01 Q1 m W O u) 1n N r H 01 ri w f N W o 0 1n 1n W to w W r r r r �# 0 O 0 0 0 0 0 0 0 0 0 H x N .-a f W .•-I ri r•I r•I ,+ ri H W W W N f Q. C f O O o O O O O O O Cl. N* W W W W W W W W W M + at Q.+ a a a a w a w a a, W N # O N >.# ri H -A . . ri H -1 N ri N ri 1-I ri H 'A C7 x Z PI E. 1 a 1 a I a l a l a I a I a I a I a + + o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a� # a a4 f o 0 0 O o 0 0 0 0 0 0 0 0 0 0 0 0 0 El + # F # I f I I I I 1 I I I I # 3-1 1 -A # O 1 0 Cl I O O I O O I O O 1 0 O 1 0 O I O O I O O 1 O m x g p .-1 + 0 0 0 o O 0 0 0 0 O 0 0 0 0 0 O 0 0 .-i f ro x o o o o O # o o o o o N H Ca f N # 1f) O I f I I I 1 I I 1 I I 1 f \ F I + I I I I I I I 1 I W # V 1. + 0 0 0 0 O O O O O + .0 1 + 10 O 171 O U) O N O N O 1n O [n O N O M O + O N .-Z f N r-I N .•-I [ N ri N ri N 'AN ri N H N H N x •H ro . x O I O O O O O O O O J-I # of•rl # !0 # m q 1 f I I I I I I I I I ❑ x — --- — — — — — — — — — # Ik I # I I I I I I I I I x O Ck + E 4 ❑ f In O In O M C. Ln O LO O o O 1f1 O d• 0 v O # 4-1 # N ri N M N .-I N .-I N ri N I N + o• u# f .i �C Of + [>a I Z+ I I I I t 1 I I I x ro f m N m W r on N ri Q1 f LO m m V' m Ot 0 U• U 1 r-I 0 m 4 V' 0 r-I 1C1 CA x A +� 'O x N N N N N N N N N # V Q. # W W N U'1 In V' V' f•1 x -11 IV O + f i1 ❑ m x I I I I I I I # 1 4 # 1 N I N I M I M 1 -0 1 V' I Ii f I In I W f S•1 '.� J-/+ O ri O 'A O .--1 O ••-1 O .-i O r-I O 14 O r-4 O N O U + Ol d Ll.+ O O O • O O Cl O O (D V H f W + r 1 E. * V) W f U) + I U)x I I I I 1 I 1 I I O .4 * 1 + 1 1 1 1 1 1 — 1 — 1 1 .rl x ?1 1; + H N N 171 m r-I M OD r W M In m V• rK M V• N N W + O W x W N m .-i 01 r-I O C. .-1 O N O N O M O M O O1 H + Ol 'p x it u1 N Ift lU lO l0 lfJ 1p tp •> Cy # r, Ff + W W W W W W W W to O x W 0 x N N N N N N N N N z a # f H ri ri t ri ri ri ri C7 ri a 4, 1 + I 1 1 1 1 1 k 1 H m + —————— — — — — — — — — — — — —U)OD W x I N x r I 0 r I o) O I N M I V• m I ri N I V' M I 01 r-I I V• ri 1 W i. ri Cl M r-I m In tD N V• N M V• N CO i In O M ❑ A,' V) f ri ro a x Ln - (14 0) 1-- W) M ri O N41 ') •,w N N ri N ri r-I r-I ri r-i .--I r-1 e-i ri ri � atD a f cnx H N DD * I # I I I I I I 1 I I I W I LO I In 1 t~ I N I 0) 1 r I co I I Z W ❑ # f W N r N r M m O E T: f ri U) # 3 r-1 RC m: x '1) a * .-i r-1 0 o rn m m m aD f0 3 # •J O•.1 a f ti # I I N E. a * I —+ Tr I r I —r I r- I r I r 1 —r I r I r I EO 7-. # # N N N N N N N N N ro E aOG + 01 w + x a ua + tj + U A OD f f ro a W H# f a A a W + I + 1 I I — I I I I I 1 �., 14 a Ln # k # W I O I N I WI —W 1 r-I I O 1 r I M 1 ro H O x + M .n OJ Lfl co m LIl C1 N u W # u # V• W N V W m O rI M b+ A 0 z w > x O F a # f-1 Ol # Irl M V� as V' Ul LO ►I 4 # ro r-I # co iD W W W tD W io W a z x x W f N N N N N N N N N O V ?• # # .--I ri .--I ri r-I H H W # 1 x I I ! I 1 I I I I U} ❑ # I # W I C1 I tl- 1 N 1 r 1 Cl) I .-,m I In 1 r+ 1 H x ,q x ri N N M M c -V In W T"r # 41 -+ # ri r-I ri r-I H -4 r1 .-1 e4 x N + # # + I + I I I I I I I I I f I f m I m I Ii 1 I b• I OD I m I ri I NI v I I' 01+ ri 01 N m In (,NN in V' 0) M 6� CD 61 - (n W 0) # +I Q# M In r In o In M In 1f1 In r In m LO o In ri In Ul # S4 .7 O f r r r r r L~ r r r 3 * O (D .--t+ rh c vi c c v c c c V• c v �• In a• 1n a # > ri U!# W to to ko lD W to to W SL # { W f N N N N N N N N N �., # H .� # .-•I r-I r-I N r-1 r-I ri H r-I a -- I U x I I I — 1 I I — I — 1 — 1 1 # I # —M I N—lD 1 O —V' I V' W I N O 1 0 O 1 N (V I In r I W M I M m lD In 00 v' W O 1- OD O co v N 0) ri in r N E # O # IPI m V' W ,--i [n r IV .••I V' N M of N N N c• N # -0 O1 # + N ri # O .-i N N M M M C tl• W f ro W f m m OD OD W co m m m .7 # !-I '-* O 0 O O O O O O O H + Ui I-7 # ri ri ri ri ri r•I .ti N H tL # f M k Q, ill + O O O O O o O O 4Ja a w w w w w w w M k Q! ¢.# a a a a a a a W N + O $4 + r♦ N '-I H -4 H '-I H ri .. .--I H .--i .1 -4 (D k z a E k I Da I a I a I a I a I a 1 a 1 a i k # O O O o O O O O O O o O O O O U7 # a a + O O o 0 0 0 0 0 0 0 0 0 0 0 0 F. # N N # l k k E k ! + I - I I 1 I # bt 1 ri + O I O O I O o 1 0 0 1 0 O I O O I O CD 0 O I co # .a. A ri + O O o 0 0 o O O o 0 o O o 0 0 H 41 rO+ O O O O O O O O O + N H G.1-K N # Ul I + 1 k 16 m x+ N # W 0 1 + I I I I 1 I I I •--I 31 -- - - - - - - I k \E. I k 1 I I I I I I I tD # 4-) w # O o O O O O o 0 + A I _ k to CD in O u'1 o In n o U')o 1 o LO o to 4. tp z # N -4 N r-I N r-I NH NH N N .--ri i 1V 10 C # O O O O O O O 41 k O 17.+ k E 4 a k Cl) O en O N O '-i O O O ao O LO O to * # N ri N ri rl ri ri ri O # O-11 t1 k {�.. I z ------ - - - - - - - - - - # ri t tZ. # I I I I 1 I I I # tD k ri M � 0l N C N N k to to to N LO 01 to %.0 to C LO H to OD U7 # •rl 1-) 'O# N N N N N N N N + •rl W O+ k Ftq N# # U I w+ I I I - - - - I I 1 I I + # 1 .4' k 1 r I O 1 0 I 01 1 0 1 r-i 1 M I ko # F4 > J-f# O H O c-S O ri O ri O N O N O N O o 0 k u d p k o 0 0 0 0 0 0 0 z # iL ri q k a H # n W # ri E. # U) W # H # 1 V1 k I I I I I I I I 0 a + 1 + 1 1 1 1 [ 1 1 -•1 + �•t ri k ID N cor-I 01 ra O .� -1 .-i •-1 O N O N U) W + bl W + M O M O M O o o v CDv o a• F1 14 + N w # 01 H k O)•6 5 k t0 l0 ID to to lU t9 .7 44 k r, H + tD l0 tD t0 l0 w tD to O # W O # N N N N N N N N z a # k ri rr H H rI i i r a k I # I 1 I 1 I 1 I I Hm # ------ - - - - - - - - - - - - - U7 OD W # 1 O # N I M V• 1 M t0 I W 0l I of m I V• r I N N I tD r I 'a 5 + M M O w r tD W a1 ko V' 1n O U] 0l C q !y' cn # r-I tII rC # O r %10 to ti l LO v a •• w v # # o O o o O O o H >aa H # > x w # . H.QF� V1 I'J1�� + 1 N+ I I I I I I I 1 1 + 0 1 v 1 O I OD I r I r 1 0) 1 ri 1 I Z W ❑ k + r r.) O l0 M O r to E 7•t # • UJ + - ri ,Z' 4. 4)N a # r r r l0 tD N to 1.7•rl a # # ►1 `y3 + 1 + I I I I I I I I — — — — — — — — — — — — — — — — U1 E. a # 1 11 r I r 1 r 1 r 1 r I r I r I r I U) X Cam. * N N N N N N N N X W w # U + U a co+ k w F�g w m " #a I I I i I 1 I I H ------ - -. - - - - - - - - - - - a a to * I k oD I m I r l l0 1 tD I M I W I r 1 l6 H O k k M (n N O r (n 0) C 4 L (W9 11 W '� * 'r to tD r r OD Co 0 E+ a « u d # to to tri to to to to to S4 FC # to ri # tD to ko tD tD tD tD tD N z 7C # 3 W # N N N N N N N N O U >4 # + ri .-i ri ri r-r H r-1 r-1 H cn Ql # 1 1 I I I I 1 1 1 1 Ul H k ------ - - - - - - - - - - - - - - - U1 n # I + W I 1n I M I N I Cl) I r•1 I 10 1 r 1 H # 4: 11 t0 r O 01 O ri N C }'. + 41 + ri ri ri ri N N N N k II.H # # 4) W # # # # I + I I 1 I I I I I # I + O I M I M I d• I to 1 r I 0 1 O I M U7 4: r Ol � ON Vr 01 r-r 6] r Ol NI r 01 'm.$ k u (].4 N N M to d' to tL7 to sn to l0 to O LOr U1 # sa p o f - r r r r r r r + o d ri « to v Ln a to c to c to a to c to c to # 'J ri (n k tD tD to - w ko - t0 tD . %0 S]. # C W # N N N N N N N N Q - I U # I I - I - I I 1 I I I # 1 k tD t N H 1 0 H I w w I w 1.0 l 0 w I .--t r I M 0 1 4-) # G' # 001 01 r tD w O N M r-I Q a1 m W O -00 4 k l0 H m ri O r-I N -1f•'1 ri v O N O t0 # a Ui W + 10 W # to m co OD O OD W OD a # J.? + O O O O O O O O w # + EXISTING MISSION TRAIL LATERALS LAT «13_611, "B_7„, AND «B_8" ny '" T� CCS� rS�:-�5..�:=.•• .�'t �CxSCS. a ME silos � � � � i � s � r,� =�'_;=^ter=^ ° F �'• s s gg�MEN Sam 30 Iv— :MEN T ME CCZ MEE JE V. :=m.4: lim Mm EEO Big aig SM �=:s $ $a ems.,,;; �R��.---_r"r $ nm az-r•=-::� -- s ' x x N 1tl r1 0 •� N rC o � O O O o w z z E-A E c� w a r> m w W o 0 a > Q 70 z o a a a a s H CD w -4 N O w w Ir C70 Coo N r z 0 z 0 I >4 +J po po [] o C] o �q• O W M OG W O ui �7 a r1 W N W N kv u) N cn V _ � r $N z H mm l0 N -- O a }� V Z r1 O - N N O H N .i z N H J [7 m O m I a O z z o a N z o a.U' 2 0 2 H 1Z•1 a Z a E. H x N Q m a En U H H I c, 2i: 4 E. W N O U a U U Ha • wry n� G H U H w w m m z W N O H a U " U ri U N U N U N 3 W E w W W W W W W 0A', x I I I m m m u) u) 4. W E t [L P4 cn 0 o W U W EO Eo EO E+ o E o n 4 H o a E H a a r- 9 tV o4 O P4 O 1 ai r-1 mmpgS O ~ r47 p w >j O. cV N > N > N �1: W .� pG `' oa' ai a O z -4 z -w -w z -v z cr P4 H ko H r H r H r H r 04 F4 E+ H x rN-1 .N-I � a w o o U w x U n o x o a o 0 H o o FC P4 wH In w a z a w o o �n ono x Cl a4 04 O W u H H H H • m H Hr p W H >� p H11 Ho W Ho Em A4 Elm m m I uI tt o rC rl U cC .--1 cC r-1 W 4 rl W m O E E O E o z E o E O O E O H x w tfpl £ OH w a cn-4 m r1 9 m.-1 (n ,-1 O (n-4 W E0 o Ey 4 D z W WH o zo1:9 4 Pa a aca 7 3 E H E E f+ `� a wo xa ao xo wo [_ a mm � m � m �m Mm o� �.4 - 3 - w- a• - OW 10 I I I u) P4p p P4p mp zH m m m a a a a a W H H H $ W r1 N m H H H H H m z +ti S x >+ m O O O .--I N m c N �o U E+ 2 z z W W W W i z ° ° ° ° wz `� aa z z zz i W m C7 C7 c7 z z z z z z z z w W w O w H .4 m 0 0 Q Q a a a a a a a U U U U x w W W W W .-I # LL Sr' # o 0 0 0 0 0 0 0 0 N # V•r1 U + + .'y5 W N # W W W w w w W W w i 0 W .4 a f O f a a a H •-i H ri H ri H ri h4 r-f " H H .•-I H r-I H 0 o + Z SL E + _ 1 d _ I a _ I a — I a — I a — 1 a — I P4 # f O O O O O O O O O O O O O O O O O 0 al # I a OG + O O O O O O O O O O O O O O O O O O # J-) 1 .-I + 0 1 0 0 1 0 0 1 0 O I O O 1 0 O 1 0 O 1 0 0 1 0 01 0 co + 'c ❑ r-1 # O O O O O O O O O O O O O O O O O O Ord # a) H Gv # N + N 1 # N # m O 1 x # I I I I I I I I I # ------ — — — — — — — — — I # \E I + 1 I I I I I I I I # -P 1. # O O O O O O o O O # 0 t + O f••) O M O M O M O M O M O M O M O M # 0, 7r# 1Il ri LS .••I N H 1I7 H 1n ri N ri to ri W N r-I a + •,1 0 = # O O O O O O O O O 4--1 # N-.i + .-1 .•-I ri ri r-I A + x ❑ I # _ I _ I _ I _ 1 — I _ I — + O LL# E.4' ❑ # m N W N O N ••-I N N N M N a' N Lo N ID N f 1J # M M M M v M V' M d• M 4 M r M tl• M G' M f 0 f O•+i N •% .-� ri .--I •--I ri ri � a-i rl x CHcI 1 '7-i 1 I I I I I I I 1 # H 1 2 + I I I I I I I I I # a1 f M Q' a) m O 1I) M M lO + C r d` C d' CD cF M tl' 6) V' 7 V• O 'v -N •rl J-I 'd f M f•') Cl) M M M M M M # 4-J 4 + m m r r lD iD cD o n + U ❑ 1 44 41 I I 1 1 I I 1 I I + 1 f.' f 1 Lr) 1 � 1 m 1 ON 1 ri I r) I to I r- 1 0) )D + w y 41 f O V' O tl• O -0 O -W O U-) o U"1 O 11"1 o o U + a) 0) Q.# o 0 0 o O O o O O Z # 0. -I ❑ # ,Ai H + w # E # En W + N .# I W# r I I I I I I I 1 O .l # 1 + 1 1 1 1 I — f -i # ?1 ri # CDri -1 N M Ill m O) r 1n N ••-I M 0) N r 0) 1n Ol W # 0 W # OD N O M M N Ul ri r -4 0 11 O cm) -4O ri O W H + 0)'✓3 w+ V• N Ul 1J•) 1[l N lD lD )D Gv # c 54 # r r r r r r r r [- O + w U) f N N N N N N N N N z a + U' ••-I a f f + I I I I I I 1 1 I H m + —— — J Ul m W f I N + M I r M I l0 ID I m m I e• m 1 M m I H U•) I Cl) m [ iA r I M W rl U # 'O .'� •% d• ri m ih r W r -4 OD C. O M M Ol m O O ❑ A.• # fi (0 A'. # W N M to N 0) w a• M a •• Lv # O1 d # N M r-i M O N 0\ N OD N m r-i r -t t0 r-I )D 11 H O dl + I N+ I [ I I I I I I I P: + I + tr I ri I N I O I M I N I Ul I C I m I 1 z W 11 + N 10 M r-[ O) fD r r r E + .-I VI f '$ ri Ff, + 0) Di * a; C CD LO fr1 N r•+ O 01 id .'i # > W + N N N N N N N N A ic H lD + I + I I I I I I I I i a w I vl# — — m m U+ i J o 1 O 1 o 1 0 1 0 1 0 1 o 1 CD, f o I rn H f + r n r n n r r r r m a # # tT E. Pp` x N + N N N N N N N N 41 �U * r-I H.-i •-i r-I .--I r-I .--1 ri U r1 ❑ + + ro aa1 # # a W y H x + I + I I I I I I I I N I i9 1 —wI —N I .i I t-- I -'r I —-W I •-I I rt x E Q f f r r r O m M OD C N b+ a z N 4.t N > M ri L) m m m to d• ri O >+ O 1 + +3 O) # N M a• Il) r OD C4 O m .] N O -0 id H # W \D ID lO Wl0 l0 r a P In O f $ W # N N N N N N N N N W N •.7 # I —+ N I O I lD I M I ri I m I f m I r I m I N # # M to r o) ri (Ij v ID W # it + v' rn v V' U7 in in LIl N # a1 Cv # f I f I l I I I ( 1 I 1 # I -0 O I l6 [ ON I m I H 1 0) 1 0) 1 lD 1 (1) 1 + m+ N N ,-1 N O) N O N r N O N M N r N fn N '3 + 4-) "f 0) O r O O CZ) M O Cl) cm) M O ri O m O N 0 m # w ,? O * O+# 0 O O O O Oa ao O�r rn Cla) a) ri .i r . OD lD 1D to lD7 rt + SD ko tD )D )D # 4 W + N -4 N ri N -4 N r-I N ri CV .-i N .••I N ri N r•I r-1 -1 r-I .--4 r-I .--1 14 .--I ri I # I U + 1 I I I I I I I 1 E+ # -------- — ,f," # I # 0 1 O) O) 1 OD %D I M O I Olt O) I O—m I M e-I 1 r 00 1 O) r I m X # c # @ �D O OD 0) %D lD M ri r m m m N O �D r .--1 W # O a + m N v () M m N r O ID lD 1n N iA 00 C• N d' # -r1 a) # # J� ri + r•i N M d' Ul lD (D r W # t W # O O O O 40 O O O O O a + +� 0 0 0 0 0 0 0 0 1-•i + Ul a # '•i '-i .-i s-i r•1 ri ri .-I .•i N * 0, 44, O o 0 0 0 0 0 0 0 k (>w\ m* W W W W W W W W W * m p# a a a a a a a a a W k O m T* ri H .1 H ,-I H ri H .1 H .1 H ri H ri H r-1 H c� + z a E* 1 a 1 a 1 a 1 a 1 a I N I a I a I a * # O O O O O O O O 0 O 0 O O 0 O O O O O O O O O O O O O O O O O O O O O O E k 1 # I Y 1 I I I I I 1 I * 0 1 0 O 1 0 C. I O 0 1 0 —O I O O I O O I O o I 0 0 1 0 M * 3 q •1* o 0 0 0 0 0 O 0 0 0 0 0 0 p 0 0 O o + ro* o o o o o o 0 0 0 o k N H w N # m I I * ro N 11 D7 0 1 ik I I 1 I 1 1 1 I I # — — — — — — — — — — I # \(1 I # I I I I 1 I I I I l0 * yl * O O O O O O O CD # (1.t: I = # O M O M O M o Cl) O M O M O M O M O M * C4 * Ul c-I V) .1 1fl r-1 U') ri Jl ri Iff rl Vf .1 L1 ri If1 .1 v 4. -,1 ro c * o 0 0 0 0 0 0 0 0 10 # x q l k I I I I I I I 1 — I — -•' — k O O,k # E 4 q* r N OD N O N 0 N O N O N O N o N m N * 4.) v M V• M c M a' M v1 m N m N m 1i 1 M a M * ()-•-1 H # e-I f-I W H 1•-1 r-I r-I r-I 1•-I i 1 i "1 ro OD ON N r M O 61 * U 4 W# d' � a' l+:f d' N d• O� d' r d' d' d' N d' O v r k •rl +1 •p* M M M M M M M M M # 41L11 7+ v v' v M M M M M N * •.I N O k 0 q l w* I I I I I 1 I 1 I * -- — —--- — — — — — — — — — — — — — — — — * 1 .0 * 1 .1 1 M I U) I m I O I M I l0 I Ol 1 N cD * H > V* o .0 0 �D o �D 0 �D o r o r o r 0 r o w o t7 + O) w M# 0 0 0 0 0 0 0 0 0 Z * R,ri ❑ * v H * :J W * ri El # O W'), Cn # I U)k I I I 1 1 I I I I O 14 -rl * 7.r-I * tl') �• M N M LO (N r N 0) ri O ri '-I '-I - - * LT W w* N C. N O m O M O m O (M O v O OS H # 01'CS .'1". * lD lD lD l0 lD 1D �D l0 CO > w # C $4 * r r r r r r r r r O * W o * N N N N N N N (N N z P4 k # s 1 ri ri ri ri r t r 1 ri o• ,1 a # I k I I I I I 1 I 1 I H OD * —— — — — — — — In OD W * I O)* N 1 cN N 1 P %D I N 1n I ko r I (N M 1 14 N I 01 M 1 �D OD I N W .1 C) # 'O 5 # LO V• O O In OD e1 r r m v O r-1 N w t0 N r-1 q FCC # ri ro 4* 71 O co 1- 1010 In a• , H i1 C, 4) 0) * N r-1 ,i1 H 6• O C O M O M CDM O N CDN CD H w W * I * I I I I I I I I I m k I # W I OD I d' I C I OD I w I r I .•-1 I CO I I z W * * OD ,-1 M In m ON M to 0 E * N 'AO) Cl. # M r r 1n a C M N $I I I I I I I a a) 1 m* ------ — — — — — — — — — — — In DOU* 1 * 0 1 0 1 0 1 O I o 1 0 1 0 1 O I O I m c H# # r r r r r r r r r 3 Uo E+ 'J* CR * N N N N N N N N N ro 94 * a w # ri rl r1 ri 1 ri ri ri rl k U ri I] ro as• k # a W H x # I * I I I I I I I I 1 �.• Q' C4 * 1 # r 1 N I .1 I M I 01 a7 1 —v I —r I —NI ro to E1 4 # # N 1r W o O 1C) co r V w a 2i ?i * N r N r N 1D OS N In m O �+ 0 1 • -41 (1) # O .--i ri N N N M M M . C4H o# ro # r r r r r Ih r r r '. CJ]0* BE W W # N N N N N N (N N N W U) H# * .•i r-I ri ri .••1 r1 .--I ri ri k -- I # 1 — I — I I — I — I I I I —# —m I N I m I 01 I V• I e-i 1 01 1 —OD I co I O f1 In r O Cl) N OD ri * a-) kD lD r r r r m # a) w k * k # I # I I I I I I I I I * 1 * co 1 0 1 r 1 -0 1 kD I 01 I LO I (l I @ 1 # O)k ri N CV N O N N N 0l N N N N N w N N N * 41 Q.1, rl C. �o O H O 1() O m O N O 0 O r O O O to * fi >0 14 In O* CD O O O O O O O U)* O C O V' ,--I d' ri V' .•i d• N C' N C N V' M V' * # r r r r r r r r r l0 x ., W * (N -4 N ,-i N .•+ N .-i (N rl N ri N ri N .--I N r-I D] * H j'..# .--I r-1 ri ri ei ri ,••I N .--1 I * I U* I I l I 1 I 1 I I 1 * I)) I M OD 1 M r-1 1 CO Ol I O 1n I r N I N w 1 0 N I OD O I OD # G # 0', r 10 M O 0) Ol Lo l0 M O rl r1 co 0 W r V' W * O r.. # M O M C• N W N m N N N -W ri w ri r ri # -.-1 O) # # 4-1 .1 + r m C0 Co CD Ol 01 M, 01 w * ro W * o 0 0 0 0 0 0 0 0 H * U) .7 * r-I .1 .1 .-i r 1 .1 H ri ri w * * M * 04 ,C + O O o O O Cl O O O ") + 4-) a a a n a a a a a W x O H ,'1 x r-I H rl H '-I N ,--I H ri H -i H ri H rl H .A H U x Z C4 F * 1 04 1 a 1 0+ I W l a I a 1 a 1 0+ 1 a F4 0 #P. W 1 # + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •rl # + N x I + I I I I 1 1 I I I x }) I H 41 O 1 0 —O 1 0 —O I O —O 1 0 O 1 0 —0 1 0 O 1 0 O I O 0 1 0 W x $ q .-I x O O O O 0 O O O O O O O O O O O O O N x N 1 x 1 # (UX # 0 N x PA 0 1 x 1 1 I I I I I 1 I I # \H I + I I I I I I I I I a x a, t, x 0 o 0 0 0 0 o 0 0 # All 1 c + o M o M o M o M o M 0 rm o M o en o M * tn H U) •'-I + -a ro = + o 0 0 0 0 0 0 0 0 Rf + 5C q l x I I I 1 I I 1 I # LL I # I I I I 1 1 I I I x O 0.* 0 + 0 N O N 1D N -T N H N m N d' N m N O N x li 6 * d M cr M v M ) a M M r 1 i c••) N M N M + + 'I M 04 + kl I 'Z,x - I I 1 I I I I 1 I * — — — — — — — — — x i I i i I I i i i x ro # 01 ri M o u) O lD N x U.0 W x d• N C dv v N a• O v 61 v r d cD V -I a M v .0x -•-[ Ol O x r-i .•-I W ri v-1 .-1 .--1 r-I .-1 + U q I Cu x I I I I 1 I I I I # I C # 1 N I m I N I w 1 0 1 d• c m I v I O lD x t•1 .? 4.1+ O m O W O 61 O O O O O O O O '-I O N o U # m N CL+ o 0 0 0 0 0 0 0 0 v H + 0 W + '1 E # O W x O + I U) k I I I I I I I 1 1 O �4 + I x I I I 1 I I I 1 I •.I x T W x N O M O c"1 O V' O w O C 0 V O C' O v O UI W + tD+W x d• O V O C O V• O V O a• O d• O C O C O N H x 0)'0 PC x lD lD w lD lD cD l0 lD W 7 E. # V H x r r r r r r r r r 0 x W ('J + N N N N N N N N N Z P4 # # .--I .-I r-1 W rt r-1 c-1 W r•I U' .--1 W x 1 + I I I I I 1 I I f H m + —_•- — — — — O m W # 1 0+ -7 1 v M 1 N M I u) to I M (D I L) V) 1 W (N I O cm) I N —0) 1 lD M w .••1 N 01 m rh Lr) %D N d• O M m N to O VT Cl) M N N N N '4 '4 s4 a •• Ca. x N W x N O N O W O .--i O r; O '-1 O _; O W O ri O 11 H 4) O x I O # I I I I I I 1 I I U — a x 1 x OD 1 -1 1 lD I w I In I cD I M I O I D1 I I Z W # 11 N r 'A 1D r-I lD N m M E # •-I O + •-I Kc x (D M # N ro m # > ry # .-1 rl ri O-4 * + w �I x I I I I 1 I I I O u7 U x 1 + 0 1 O I O I 01 o 1 cm) I O I O I O I O H + + r r r Ir r r Ir r r 3 is E+ O+ u) . # N N N N N N N N N ro F;9 Q+ a r a # -i A .-1 .--I ,-I .--t 14 .-4 rl X 0P4i U x f0 rl * x a w H x x 1 # I I I I I I 1 I I w # — �, r:C l —W I ^m I —N I Oi I O I Oi 1 ro m: E r$ x + m o rn r M m W -w c N a. W # s+ + O M C lD m 01 rl N M o >• O 1 4J (1) o a 'r w v c v un v) In 0+ ro •-i + r r r r r r r r r a PG 0 0 x ',; W + N N N N N N N N N W O + -- I x — 1 — I — I 1 I — I — 1 — I I ,7 + 1 —# ri 1 Lo I .--I I o) I —O 1 v' I H I N I m I O x ,G x u) m N Ln O a' 6i w m # J-) # OD m c 1 # "E # x N # x x I x I I I I— I I I 1 I + I x N I u•) I —cD I —r I m I NI WI OD I e-1 I + + M N W N r N W N cr) N v N N N D1 N u) N 4) PL* N O V• o IA O r O m O Dl O O O O O .--1 O O + ti > O x O 0 0 0 0 0 O cm) O U) 0) •--t x M d• M ep M d' M v M a M C V• m v v v V• # p rt rn# r r rr r r r r r 4 r- + N W N W 1 N ri N N ca W N W N N r-I m + H .G# .--I .--I r- -1I H ri N .--I r-I H W I # I U x I I I I I I I I I X # 1 110% 1 .--I 0 1 %n If) I O N 1 r N I v if) I N r 1 0 r I m U) I In X x r_ x -i M u) 11 lD o %D m u) r N lD m L) M M r N W 4, O � # 01 .--1 O W W W N O M O c• 0 cv O In O u) O # 1-I •--1 + m O O O O O O O O W x fa w + O W W .-1 .-1 W W W 11 .a # }-I 1# 0 0 0 0 0 0 0 0 0 cr + Q r!+ O O O O N # .G•'I U k 3\ a) N W i w 1%# a x :�# r-I H .� O O O C7 + z W F F:4 O — k k O O O O O O a� f a aG f o a o o n o )✓.. + N N + -rl k f E f I f I I I I k J-I .--I# 0 1 0 0 1 0 1 0 0 1 N # ro k O . O O . O O # a1 H Cv k N # 07 I k r r N + Ip O l x k I I I I I k \E I k I I I I O O O O O m O ) k •a) ro = k O O +/ k a�-.i l + x A l f I I I I + o n > k E. Aq # m N N O 01 O 4: 4I + O M m O d• O + $ V Ei k # o•a si x ri r r + E. M I z + 1 I I I k •.� � o# m rn � v k jl Q 71 f rt # •ri Q7 O f N ❑ li k w k $4 D 1 +i + 0 1 N o 1 0 1 0 0 l o z0 k a) m (] # O o O o 2 f n.f-1 A f .•-i ri . V) k I CA# I I I I O a k + •.-I + >,ri k I O d• d' O d• 1!1 W + b�w d f C• O I' N CD N al H k a) ' '.I.• k �D i0 r r k. # C $4 + r r r r z W # W # 14 N rN-I rN-I O N w + 1 k I I I 1 H CA U)m W # I N f 01$ 1 N O I r1 1 0 •--1 I W H U # V .7 # m m m O O o A rtC f 1 ro tC # N o a •• [.. k av 4D + o 0 H N G' k > x G. f H,f] U) # 1 k 1 I I I PG f I + O 1 N I 0 1 O I I z W k k O io Lo ko F + 'A CO + $ •-i r� k N W k CA r ro r7+ k > w f U' .i # k N kO f I k I I I I N — U) EYk U k I # O I O I O I O I N a# # 3 is F. O k U) f N N N N ro ate + + m l N ul4J a, a .[) N N LC a H o f Ctl_4 # r r r r P. P. U)O# ',� W •>< N N N N H f I # I I I 1 cn k 1 # M I •--I I r I 1P) I U) f � # l0 V' M N # (u F # f W # # f I + I I I I k __ 0 1 O I C. I k W k CA N O O C+1 -1 41 U) # ti O',� + H OO N N O N k N •--I N z N N m k H ,C.• k rl r-1 � .i 'i El I f I U f I I 1 I £ # — I # 0 1 0 0 1 z O I O O I x f C f o r I W -1 o rl W # O v + co o Co ko o %o # -.i a)+ # V -4 # O O a C3 C7 f'1 a f in \k O O rC 0 CDm H # a # 14 -4 •y m aG m .--/�--�O r-I N V zo zo m O O N W z z F+ E (9-- a a a m w w o 0 p' a 4 zo zo .a u a a • a E OD H ao �, r O W W `I 0 0 (9 a.z o z o N �_ n U) 1) ao DO }8 H O N O Q O Q O ❑ O Wtv d WO In a a o w a W r N ID U) N cn � r $ 'C N V' ri U N z H E. En f 7 l0 M oa >. � z rI o-- H N OH >1 Iz 7) H i•I N W rI � ❑ --- In o c 1 a � o z zo 0410 zo W O (9 H GJ - 0 z u. z E+ zz > o H (n F IZi q cEi) .H7 3 prq�� E Wtaa oc7a u UU a nI a H a W w 0) F�a� U) z l a a a Cl O ' P4 a 22: M # M W N O A U r i U r-I U N U N U N S W F W W G] W W W (9 a x l I U) O co U) UJ Pu AWG E. o W N ( F4 ECD Eo E(D EO FO .7 a H O .] m a o:In 04- Ri- a O Ri O U) U) co $ o H M o a• ko ;w N r ; r 3 a + O o O z% � Z ID z � 2 W W -, GG N a El H o4 Hko Hr Hr Hr Hr 4 E+ E rwu� = H cli 14 .N-I 'A 3 (9 W o o U F k U4, o s a o 0 0 H 00 a W a '7-. a 'zO 'Z. O zO ^�O W H In o (.� >+ - Cv O M O N O N O N O N '�. ❑ a i-7 a H H H H m Fi .--I r Enw tan a 0 a •--1 U a r+ a r-I a a H W W W aN li o NO 'Z. EA NO O❑ UFO P, E- o u1 W °° E. a z w � s zoo H W E H x P a w0 SO 4 A wp s 7C wa (n aaw � U) acn E. o-, a-� W, 31 w11 r1� o114 w • C) U) a as o 14n wa zH co ri) a a a a a d H H H m W r-i N m H H H H H U) z a �: v O F r1 V. 2 z ri N M a In r W W W W El wz �`' a a a z° °z z° °z z W ") (9 C7 (9 z z z z z O W H H H ra a KC o ❑ ❑ a a a a a a a a Q u o U w W w W w w w W O O O Ln H k V a + k $ d)x W W W W W W W W W rn # m P.+ a a a N a a N a a O N >,x H H -4 " r-I H rl .. .--I H H H rl H rl H .--I H r:l k Z. a El+ 1 N 1 N 1 N l a 1 a I a I N I N I a Q. N x ` — --- — — — — — — — — — — — — — — — — — a H 1 k + O O C.) O o 0 o O O O CD O (n o 0 0 0 0 n; x o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r # + E x I x I I I I I 1 I I I + — K 4.) 1 H k O 1 0 O I o O 1 O 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 O I O m + ❑ H k O O O o 0 0 0 o O O O o 0 0 0 0 0 0 rl # N# cm) • o - 0 0 • o • o • 0 o C. o •>< 0) F•I Lv k 1 # rt fa # (o + m O 1 x I I 1 I I I I I I I + \E I k I I I I I I I I I (o + +.I w + o 0 0 0 0 0 0 0 0 + � I : # O M O (n O M CD M O m CD, M O M O M O M + to z + 1f) H LO H LO H N H 1n H U) H U7 H 1A H N H Q) —1 rt : # O O O O O O O O O 10 x m 0 1 x 1 1 I f 1 1 1 1 I k D I # 1 I I I I f I I I x Q x # H .0 O # U7 O U) O r O m O O> O H O N O M O c• O 1M 7 (l 7 M K H 3 O+ k H — 1 2+ — — — I — — — I I k 1D # G• N O .A U') N N Q' 0o 0) + U) M u) '-I N to )!) H N w LO N Ln 00 LO cr M o k •rl 4) Y1 # N N N N N N N N N 1, 41 p, 'a K m 00 r x U A I $4 K I I I 1 1 I I I I ------ — — — — # I l k 1 N I M 1 rn 1 ID I r — t a, — t '-I I N I G• ko K 1-I r' 4.)k O C O C O d' O d' O C' O v' o O u) O Ul 0 U) # N m ik# o 0 0 0 0 0 0 0 0 7+ + ¢ H ❑ k v H + W + H E U))+ W x U)1-4 + 1 Ink I I I I I I I I I o a + i « i i i i i i i i I -rl + 1•H k O M M r o H H O r N 01 O OS r r (D N N N W x C)W x M H d' N r N (11 H O H H H (NJ O M (D V O d) H # 4) 10 # r r r r OD m W 00 OD w + rl to x r 1- (- r r r r r r O + W 0 % N N N N N N N N N z P4 K + H .--r .--I ri H H H H r1 M H a + I + I 1 I I l I I I I H W x —— — — — M m W 4. 1 N + 0 1 to W I C —V• I lO r1 1 1n to I Lo r 1 .7 -WI M m I O ID 1 H W H U + .0 ' -k V' N O m H rY) M N u7 )`-) Oo m N ID lD r H CDCl A, Z + H rd r-t; + M O w M o r LO m N a •• w # 4) N + O In (D M 0) N CO Cl) r N lO W LO H LO H U) H H S-t a' QG x ' x Cu + H . H H In C) # I # I I 1 I I 1 1 I I P4 a k I # U7 I N I ko I I 'o I M 1 1n 1 N I M I I z W D k + O) V' N H O O O H N x # N !4 # N N a• cC) N H O al w m rl) " ❑ + '.7 k N N N N N N N N H 41 I I I I I I I I In P. # I # O I O 1 CD O I CD O I C. 1 ^O I 0 1 N W # + 3: CT O >. # LA # O O 0 0 Cl O 0 O o co N 1 + a&a k H H H .--I .-i H .--I H H U H o # # r0 M H K x a + I # I I 1 1 I l l I I U r x I + O I M I O I 41 I in 1 \O I r [ Ol I M I rd I # # � r to rn rf N Vx W lD w PI) + H k m M U'1 LO � M O lD N C, F. : E K d) D # O # 41 0) -k ko r m of O (N N I'1 N N N N N N N N Ix a >� # x c-4 X CI # -- 1 —+ — I — I I — — I — I — I — I W x 1 x C. (D 1 'O ID I N I O I I D ID I -W1 N I .7 x All + N N v Ln r m O N C 7) # V — x aE + + O1 w + K K # I # I I I I I I I I I x I K 0 1 W I O I c• I C I co 1 .-I 1 1D 1 H 1 # 0) 4' M M cw M N m v M V• m M P) v m w M N M .'$ k 11 �+ C U-) m U) H LO H Ul O u) W U) U) U7 Ho [1- 10 N K SA •J O K O O O CD O O O O O S # 0) 0) H # ID M l0 m m M O1 1) O m O M H m N M N (n + y H tq K cD .D r N r r r r r + f W # N I N sI N H N H N H N H N H H N H m # H x H 1-4H H H H H H H — I U k I 1 — 1 I — f — I — I I I O I r r 1 m m 1 In m 1 0) OO I Oo r 1 0• N I w C I W 0 1 0) >C + G k V• al m 0) M co H co O O H M N r M N to r W # 0 k M M r m lD r c 1D H 1.0 r~ 1fi N C Ir a• .-i M + •H 0) K # +) H + cn M C V) ID l0 r r m w # (0 W # 0 0 0 0 0 0 0 0 0 a # u # O O O O O O O O O H K to .7 K H H H H H W H rl H w # # i*. $\ N s W W W W W W W W W rn * rn ¢ x a a a a a a a a a w -w « O Sa 7.i# '-I H .•4 H r4 H H H i H H 'A H .••I H ri H 4 N * z a E # l— a l— l a — a l— a I— a l— a l— a l— a l a— a .-I 1 * # O O O o O O O O O O O O O O O O O O F, # N N * O O O O O O O O o 0 0 o O O O O O O ri « f E « 1 + I I I 1 I I I I I * — 4 —----- — — — — — — — — — — — * V 1 ri * 0 1 0 O 1 0 o I O O 1 0 O I O O I O O I O 0 1 0 0 1 O 00 # 3: Q -4 * cm) O O O O O O O o O O O O O O O O O r « m * O o 0 o O 0 0 C. o o # Ol H {J * N # O) I # I * rou x * io + W 0 1 « I I 1 I I I I I I I « \(� 1 —« I I 1 I I I I I I * 4) {.. « O O O O O O O O O * = 1 = f o m O rM O m O m O m C. m cm) M (D [•) O (n x b) z* u1 14 0 r•1 u) 11 10 rA u7 .-i u) r-I In ri u) 11 u) r-4 a� # -H m f o 0 0 0 0 0 0 0 0 4-) * O)•rt « ri ri ri ri ri r-I H ri H Q 4.# x q I — I I — I — I — I — I — I — I — I f {I.— I —« I I I I I I I 1 1 # O LL# * E. x n o w o r o of o o) o ON O O Cl O o O O + 4-1 # v M v m v M v M Q' m v M u•) m V) m In 1� # S •1 1~ # « O.,..I1 N x ri r-i -A -1 rl r-1 e-•I .--I r-I # •-4 3 O+ # E. I z f 1 1 1 1 — I I I I 1 « r1 I z* I 1 I « rd f ul rn v r ri r d• m Na « E: Ol * u) rr .n v Lo ry .n o0 .o k� .o r' .n H u) m o rr « •ri V 'ty* N N N N N N N N N IC Va � * M M M M N N # .-1 d) O # ri r-( ri r-1 ri ri ri r-r ri si + Uq 14 l 41 * 1 I I I I I I I I * 1 4 + 1 %D T 1 OD 1 0 1 N I In I r I O 1 N 1 In kD * 54 > J.« o N o N o o to o 0 0 r o r o r o U f 0) d of o o o 0 0 o Q In 0 v H # W # rn # I N# I 1 I I I I I I I O a rl # >I ri # r v ri m m N W N r ri Ql H O r•i O r-I H q E0 W -m b1 W x v O u) O u) O u) O LO O In O 1D O %D O ko O S) a * u m # O) H f N•O x * OD m OD OD m 07 OD m m > ra # 17 H * r r I- r r r r r r O * w U # N N N N N N N N N z a « f ri r-1 ri ri ri ra .-I r-I r•I 0ria # I f I I I I I I I I I H m x -- — Ul OD W * 1 N « m I m ID I v w I H N I N O I ID •--I 1 0 u) I v r-I I to —m I u) W r-1 U « •O > # tD If) N N /n ri In .-1 N N M to lD O v N H r q 9C z * -4 m 4 * Cl m oo r %D In v -wm .] •• w .D * O) O) # v .--I v 0 M O m O m O N O N O N 0 N o H FIa a + > m w * . H ,a En U « I O # I I I I l I I I I U — — — "- -- — — — a a # 1 # oD I r l a, I r l r l O I Io I in I r l 1 z W a x x m u) OD O M r O v' co 3 i 14, rI ie # a) a In u) a m M N ri rd 3 q x 9 1r4 « r-1 r-1 r-1 r♦ r-I ri r� r-I Ch N # -- f.iT. * I # I I I I I 1 I 1 I U) Ri * I f* f 0 1 0 1 0 1 f 0 1 —O I O I —O 1 0 1 o I u) FC * * Ln u) LO u) In In If) Io Io N W # x '$ a O �+ * U) x O O O O O O O o O Id N I + QI W * ri ci r-1 ri 14 ri r-I SC m O + U # a m H # I # I I I I 1 I 1 I E= * -- — r. U r i. 1 * OD I C. I 19 I (D I OD I m I co I r I N I tD rd R I * * r a• In b+ E. = # d) 9 # O « 1) O) * m d' v In 7!) In I() tD �D Fi YI E+ A4 # Id 14 # r r r r r r r r r a rl rr # 3 W # N N N N N N N N N r-I r1 ri r-1 r-1 14 W P7 # I # I I I I I I I I I W « -- 1 ^« N I N I M I N I aD I N I —r I M t ,-I I I? # # w W O N v r O) N n r) + 4) « u) u) 19 lD 1D 1fl r r * O.E * # N Ga # # * # I # I I I I t I I I 1 # I # r I m I m I tD t O I .--I I r-1 I v I N 1 * O)* ri m Ln M u) m O m N m O (•) u) f•) r P) r m }I Q.x N ul %D u7 O In v LO r u) O 11) N u) v u) tD 0 In # m > O # O O O O O O O O O O) O) r-1 * (•) m M M 4 M 4 M V' m ". u7 M u•) m If) e" * D r•I z) * r r r r r r r r rr r # C W * N ri N 14 N 1-1 (13 r•I N r-I N .4 N -4 N r-4 N ri * ri ri ri ri r-I ri ri -1 .--1 I # I U # I I 1 I I I I I I El # — — — — — — — — — — — ,f'.. * I * m I o) OD I N O I O O I r-I ri 1 !n to I N OD 1 ri m I (N O I v X # C # m m r O co r Ir) v D) -4 O D1 O) r lD u7 N m W * O E! * to m m M -1 N 1- N lD N m r-I O H N r-I v ri * -r1 W* # N .-i * OD O O W # m w * O O O O o O ri r-I r-I E. m ; A .G x o 0 0 0 0 0 0 0 0 # 41 a x 114 .. a Qa a a a a w G' + w >1� la '!�x H H r� H rl ri N ri U + •Z, a E + l a 1 a 1 W I a 1 a 1 d I a I a I a 9 N # -- .-- -- — a r-I I # + O O O O Cl O O O O o O o 0 o O O o 0 0 0 0 0 0 0 0 0 00 0 0 0 0 x N N # l x + E x I x # 4-1 ! H x J 0 I O f 0 I O `C. I O 0 1 0 0 1 0 0 1 0 0 1 0 O I O 0 1 0 co x $ q H x O O O O O O O O O 0 0 0 0 0 0 0 0 0 •. # ro# o 0 0 0 0 0 0 0 0 N x a) I x lO x m O l x x I I 1 I I I I I I # —————— — — — — — — — — — — — — — — — — — I # \E I x I I I I I I I I I 10 x 41 Cv x O O O O O O O O O # ,!•; I x O m O m O M O m O m O m O m O m O (n + is • •7-. x U) H U) rl Ul ri U) .-1 U) r•I U7 rd 0 .-I N r•I In r•I v x •rl ro x o 0 0 0 0 0 0 0 0 +.) # v•rl x .--� W H H H .--� H r-i rr Ri x ]C A I x I I I I I 1 I 1 1 x O R x # E F.' O # O O O O Ol O m O r O N O N O a) O 0 (D + }) x U) M 1i1 M a• M V' M V' M V' M d' m m M M M O•.� sa # H r•I .1 H H .-i H .--i .� x ri O # x 4 I `z• # I I I I I I I I I + H — I z •� � � � � � � [ I I 41 ro + cf 01 co m V ri co � x U A 0)+ U) Ln U') M U) .4 N O LO OD U') r U) U) In x •11 0 'o+ N N N N N N N N N # 41 0, 7 x N N N N r-I r-1 r•1 .1 ,� x *H 4) O r-1 ,1 ,1 41 w x U Q l [*d x I I I I 1 1 I I I # 1 4 * I m I .-) I v I r 1 H 1 0 1 6) 1 m 1 m + N D V x O r O OD O OD 6 m O 11 O Ol O Ol O O C.) O o C7 # v v a# o o o o - o o o o 0 z x 04•--I Q x -1 ,1 v I••1 + W # E # tq w x W x I o a 9.H + N O N O N O m O m O m O M O m O m O aN t;+w k x W o %o o %D o to o w o ko o ko 0 w o C. m m 7 44 ; q )+ x r r r r r r r r r o + W U # N N N N N N N N N z C7 •1 a + I + I I I I 1 1 I I I N m ; N m W + I N x 6� I O r-I I N C l r M I m—W I N cr 1 m N I m N I N m I r W •-1 U x m OD m U) U) G• N m O N r H m O -WOl N Q a z # H ro a # m N (V N N -4 H H H H 11 OWti =) 41 a) 4) �•q cm) r-I O r-1 O r-1 O r-I cm) H O .1 O 7 v5 # ul # H U) U x I # I I I 1 I I I ! I 1 # N I T 1 m I H I U1 1 N I Cl 1 H 1 m I r N m M Ol N H r 3 H El 41 -4Cn + 4i x v a + .-+ o o m m ao w w r to 3 0 U•11 >1 x # I I I I I — — — — — — — — — — — — — — — — u) '2. x 1 # O 1 O I O I 01 01 O I O 1 O 1 O 1 ul iQ'. ; x LO Ln 0 u7 Ln to Ln IU W x x 3 bd C. >+ # E. # o 0 0 0 o O O o O ro NI # Or E. H 1 H H H H i 1 # U m O # x Mm H # x a x I # I I I l I I I �. U r 4, 1 + w I .H I m 1 O I m 1 M 1 lD 1 6) I Cl) I m O O O m m O r Is E 4, 4) > + O # +J v # ko Lo to r r r r r r ro •-1 x Ir r r r r r r r r # N N N (11 N N N N (N x 09# —— —# — — — I — I I — 1 — 1 — I — I w x I x 61 I O I H I U') 1 —O 1 W I m I H I r I 5 x # r H w r .-I v m m r to # a) # r m m m rn rn rn o 0 x M E-1 x # p Y # x x # I # I I I I I I I I 1 x I + r I N I r I U) I m ! U) I m I m I U) I # IU + v N) CD m m m m m U) m c m -4 M r m N M 3 # 4-1 C4# m 1!) O Ln r-i Ul N Lr) Cl) N C' U) U) U) V7 LO ko U') U) + FI 5 O+ O O O O O O O O O 3 # O) N •--I + m M U) m � m O m � M to M �o M UJ m iD M x •> H u) x r r r r r r r r r r + q W # N H N ri N ri N r•I N H N H N H N r•I N .•-I H r-I ri r-I H I # I C-) x 1 I I ( I I I I I # I x v 1 m M I v r I r-1 r I m 0 I r N I ID m I � C I U) H I r X LO �1 r O r m to r v w 14 U) t0 Gv H M U) N W # O # 1n r-i l0 r-I r O m O m 0 O O O O H O H O x V r-I x O O O O O r ry H H W # ro W ; •-1 rr r-1 r-[ H H H H r•1 4 # +1 # o 0 0 0 0 0 0 0 0 H x Cn a x H H ri ra r•I r•1 H H r-1 w # # dv + Q. �a * O O O o O n * A •.-1 U * i $ a, d4� w w a w4. x W d• + O f•I E. N * 2 a -E * - I a I ail I I fA I 0. -1 1 * + o o 0 0 o 0 0 o m + a w + o 0 0 0 0 0 0 0 # N N+ F * I + I I I I I * is 1 'A # O I O o I o O I o I o o I cv * g p 1-1 * o 0 0 0 0 0 0 0 •-I + ro * O o o o o O # H w # I * 'a $4 x + N N 1. # P9 0 1 # ! I I I I I + F+ I * I I I I I o # +.I w * 0 4 4 O 4 * 4 1 C + O O d O M O M • o * IS Z + �n 'A 1n .A u-) o -i o + * a�•�1 # r r r � * •Z' p I * I I I I I + o a* * E. A + O O M O M O N CD + 4-J J-i # M 1• N M rl O N O + o � * w3: l 0 * I I I N I N I * ------ - _. .- _. - - - # .-1 I z + I I I I I * ro + v N N * -A 4-1 'O+ N N N N N * iJ Q. 0+ * li G }1+ # U I w# I I I I I M I m I I of I lD # H > 11 * O .--I O s-i O 4 a' O O (h * N N Q.* O O O O O C H * Z 53 �-[ E. * In W # In # 1 IR* ! 1 I I I O a # I # I I rl * >,'•I * M O M O M . O OD Q W # tp W + lD o W o W r-I o .--I H a # si w cll F-i * N'6 w+ w ao m m 6t > w * O s4 k r r r r r 2 o # W 0 k 04 .N-I ,Ni clj .Ni H * I I 1 I I E0 Oo W f I o * a• I a• r I M o 1 0 1 0 O I W .-I U + a 5 * m .-I r o r o 0 0 p F4 z 4. .-I ro FC 4, -4 A o a •• w 5 * w m + o 0 0 H sa 0Y Pd + > x w # w W U x I W *i 1 I I I I U uC I�-1 i#c I + r l M I o I O I O I E # .-I u) + + —— — — I I I I I a w # rn a * - 1 `+ O I o I O I O I ID 1 m Ln 1n u! u) W W # * 3 0 0 ?+ + m * o 0 0 0 0 ro N I # 01 w # rl i 'A -1 .-1 x mo * c- u 11 0 F # - # I * r I -V• I ^u) 1 N I N I ro I * + m 10 M m m bl E- - * Ol > o + a.) a) # r r r (;I• cf N (N N N W + I # r 1 N 1 L) I N 1 N 1 '.7 + .G * N OW v 01 OD # Q.E # # # * I * I I I I I # I + O I N I O I 4 1 O I * O1+ �O M OD M m m M o .c # L> '1.+ %D �n ID to "A �o Cl) {� U] # 1•I > O+ O O O LD M ID M l0 W to o l0 r # L" W W 04 N N I # I U # I I 1 1 I x # C I # ^r I M I O O I W 40 0 O W * O F. * -4 4 rl O N N o N w * ro W * .-1 r-I r-I a •� � a * V o 0 o < o 0 w + * x x N z z 90 � o � N O 0 c+i w z z �• H a rC a� W w CD 0 w >+ zo Zo •r1 a E m m r1 J. o W W �I 00 C70 r zo zo al �o cn m +l ID 5 0 ro >• Ho Ho ❑ o ❑ o 0 0 w o p� w r1 to w r w m vl N ul r r-1 r d' ri C9 7+ 2 E-I E0 M � z -1 0 El H N O H > i z Vl H H [W N W ri 0 c 1 a o z zo R40 zo zz ✓ 0 1z1 uEi Hazes H H U) U '� ❑ H a a 1 O a E w N ❑ 0 cl a U U U W E W [n of to W;O o W W a s o v a a X + W N O El p U.•-I U N U N U N 3 W E W W W w W w U I I U) U) N to to a. acWn0 o W N w* EO * EO EO # Er4 Er•1 p9H o a m a a.n a -1 a -4 ari ari coal al3 0 [H.. m [H.. DI j6 Dam jO1 Wa% DC a O O 2 r z r z r z r z r W ri a N a E. a H to H r H r H rEl H r CN H F Ucli= W 'A .N-1 ,N-I 'A 14 � wW w m W C7 V- O O U Us o ♦ o o f o 0 H4 .n0 f.C. W 0.• z �+ z0 z0 z0 z0 W H r o N O N O N x ❑ a ] a H H H H • cnH rt r ;7 a H P E M E•--1 w E r- E. a• a4 E. v cn w fn rZ O .t H U ,� •� rr; r-1 a cC ra W 5C W 14 14 yo rHoZcno U)o mcn P. A o rn a CD z W wH o a sOa rG w = 9c W W A m a a q 7C q W A k. a u uEl Vl am � co avl Hlvl o >111 w1� $- w-� >.11 O04 HO I I 1 W D rL p a aJ rn •J z H vl w vl at cC ry FC FC Q. H 1A H ra. W r1 N M H H H H H ul z P. 3 x v M 0 0 O N N M tl• to U E+ z z z m Pq W W W 1 E z z z o 0 0 0 0 z W W z LD z 0 � [zs7 E. V, to ii ao 0 0 o w w w w a a 0 no a a a a a a a a W 0 U U U W. a: DE: W W w W W # R c # 0 0 0 0 0 o 0 o 0 m # ,-I a # « M -, a) + w w w w w w w w w # In a# a a P4 a a a a a a rl H H 1 H I H .4 H H H I N N * '7-. a—E # — I a — ! O. — I a — I a — I d— 1 a — I a — 1 a — 1 a a H 1 # + o 0 0 0 0 0 0 0 0 o O o 0 0 0 0 0 0 m # a PG i o o 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 # oa N+ -H + + E # I + I I I I I I 1 I I # 4-1 I li# O 1 0 O I O O 1 0 —O I O 0 1 0 0 1 0 O I O O I o O I O OD + 3: q -1+ O O O O O O O O O O O O O O O O O O r1 # Id+ O O O O O O O O O O # to H C # N 41 as I # 1 # m ►, x # # m O I # I 1 I I I 1 I I I 1 # -- E+ 1 #a) 174 + 1 1 1 1 1 1 1 1 1 # O O o O Cl o O o O # S.' I + N m ul M U') M Ol M 1f) M Ln m U) m 1f) M N m # Zs • 'l-. # r r1 r .-i r r1 r '-I r .--I r H r r1 r H 0 0 0 0 0 0 0 0 ♦Jco i N •.i i rl .1 rl rl c-i .1 1-1 H H q i —A l + — 1 1 1 — 1 — I — I — I — I — I i w I ; I 1 1 1 - 1 I - - + E. -i to r1 to m �o d• ko lt) ko r ao rn kn o Io -4 \O + * tD M 1p M m aD m lo m t4 M m r M r M # Iv - I Z # 1 I ! I I I I I I # .i t 1Z # 1 1 1 1 I I I 1 1 # ro 4111 M to N 11 m r m rl # r 1n r N r r r M r r M r H r m r an # as (L :j * r r ri n a a IC •.t a) o f i 14 N N ri # u ❑ >4i # U I Ira # I I I I 1 I I I I * -- - - - - - i 1 4 # I m - I c I to I OD I O 1 N 1 v 1 10 I m to # H > a)# O U') 0 to O 1n o Lo O to O 110 o to o ko O tO o U + N W n + o 0 0 0 o p o 0 C. V H + w + r1 E # m W+ N i 1 u)+ I I I I I I I I I C H # ------ - - - - O .] # 1 # I I - � 1 � I I � •,I # >1 •; # r V• N O m tO m N O IT O r r w M 1n r a N FW-1 1•41 u w Pv rf ,1 m N LO '-I to 4 m O asl o m o o O 0 o W H # a)•6 ::311 # m 61 01 dl Ol Ol O) O O > Gu # p L4 # r r r r r r r m m O # W O # N N N N N N N N N 2 Oi # # rl s-i .-I 11 H 1•-1 11 1••1 N i I I I I I I I I 1 U)w W + 1 a)i o I r1 V' I N N I 1•-I m I m N I to N I to o1 I r1 —N 1 W o ) Ol W H U # 8 D i r m rl OD N O (n N to (n Ql V• N W r m N O q ry' i •-I m 4 # to N O r M M -4 0 M H H ') 'D Iu ; O N O N N m -1r r1 to .1 to -4 1f1 -1 to o N CA + I + I I I I I I I I I a + t + u') I ul I t9 I M I to I N I t•) I O I O I I •Z, w + ^ + N ttl M N M E. # r1 y # 3 •-i 4 # d a # to 1n 4 Id $ # > lu # N N N N N N N .1 11 0-11 - 1 I I I I V) # I # O I O 1 -O 1 O 1 O 1 O I O I O 1 O 1 u) # # O O p O o 0 o O O O # # 3 Id o # m # 9 to to tD o to to ro M # # a + I # I I I I I - I 1 I I LI) I o I 1n I m I D l I m 1 ^m 1 M I to 1 # + r m r1 o m r r O r U ct m O # N a) # OD Ol O 11 N N m V v� Ft 7+ H 1 to r1 i to w r r r r r r r a 0 C3 # $ w # N N N N N N N N N w # 1 + I 1 I I I 1 I 1 1 x # ------ - - - - - - - - - - - - - - - - - W # I # r l t� I to I 1t> I ID I r l Ol I N I to I M N r 'or, 1--1 M ID m N + 41 # Q.H # - a) Iz # i # x I # I I I I I I I I 1 + I + O I m I V' I IT I N I m I M 1 W I r I + a) # u) u) v to to u) N 1n m to In In M ul C' to m u) .$ + 41 (].# 61 M to M r m r M In m M m O m W m r-I M .k- + a) a) -1 # r tV OD Na; N O N ri N N N m N M N V' N i ;> r1 to# W t9 tD r r r r r r m + p w + N .� N .--I N .-i N H N e-i N rl N 1•-I N 1--I N 11 W + N F.' + 1•-I e-t H rl r-i .--I .--I rl 11 •F,' # I + O I N N I o) 11 I V• to 1 v -m 1 to m I m-m I m ,-1 I N tD 1 M x 41C + m to N aD a aD N M H co V' m m r m O CO W # O F. + -4 M) r m tP r a• to c-1 W r u) N C• r V• N m # a.r •1 i M V• 1n to to r r m w # ro w c># o O o 0 0 o O 0 0 a i1 i o 0 0 0 0 0 0 041 0 H r u)n a+ 1--t H 11 1•-I 1H 1-•1 ri H H w # # # O O O O O O O O O � * v 13.•H U i. k '$-- N � W W W W W W W W W cr x En n.* [4 4N E1 N N N N N N W '11 + O w >I* H H H .I r3 H H H H I--E H H H H H H H H U * z LL E. * 1 N 1 N I Qe I EL I EL 1 a4 I N I N 1 N N H I * + O O O O O O O O O o o O O O O O O 0 m # a 1x + o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fi * N N x --i * # F # I * I I I I I I 1 I I * — — — — — * 43 1 H # 01 0 O I O o I o O 1 O 0 1 0 O I O O I 0 O I o O I O oD H * O O O O O O O O O O O O O O O O O O H * 0 # O O O O O O O O O O + N H ru # N + N I # ca O 1 x # 1 1 1 1 1 1 I I 1 * —————— — — — — — — — — — — — — — — 1 # C. I + I I I E I I t I I * 13- C. * o O O O O O O O O * �'. 1 : # In m In m In M to M In M I(i m N M W M N M Ol * •.i * O O O O O O 0 O O Q * r ❑ l # — I — I I I — 1 — 1 — 1 — 1 — t * CL 1 + I I I I I I I 1 I * O RI x E r-. A # N to M to to v' to I!) to En %D m to In to GT to * P * r r••I r * O.1 Fi # H H H rl H H H rl H * Eu I Z * * I I I 1 I I I I I — — — — — — — — — _ — _ l I I I I I I I * E6 * H m r N m r r r m In (� m R i-) a •�* V' M m M M N N N N # -11 01 O* H H H ,--I r-I H H H H x $I ❑ Si+ # U 1 L* I I I f I I I 1 I 'r I tp f Ol I N I In 1 61 1 N — I In tD + Fa •J yl * O r O r O r O r O O7 O m O tb O o1 O o1 O U # N N Q.* O O O O O O O O O Ir H * O W H EI * N W Vl + I W * I I I I I I I 1 1 o a * i—x i i i i i i i i i •-I * 7.H * .--4 m -w N to N co H 61 H O H H e-I H O N O SNi rwd * tI W * H O H O H O .--IC) •--r O N O N O N O N 0 . . . . . . . . . . . . . . O1 H * W •O III -NO O O O O O o O O r=, * C s4 + m oD oo oD m oo W oD W 0 * W 0 * N N N N N N N N N z d # * H H H H H H H H H C9 •-E W * E * I 1 I I I I I I I — o W * r 11) * M I OD O 1 O HI En W()ou7 1 H m 1 io cr I 61 r 1 M M I In .-I I r W •y U * r U1 M O m H to v' N r � '-I to w V• N N m ❑ RC + H b .> # r r to In a -v M M N H H O N O N o .� NE # UI # H m x I x I I I I 1 I I I I PG * I * In I -T I w I M I N I In I H I O I NI I z W * # m l0 m H v r H In o1 E+ + H tf] # ,'� H A, * o) M * r l0 In If1 v m 1•'7 N •--1 z # 7 Ca * H H H H H H H H H FI * I * 1 I I 1 I I I I I W * I * 0 1 ID O I C. I o f O I O I O I O r a) # # O O O O O O O O p 0 O * In + to to W l0 to to to ro 16 N # QI Lv # H H H H H H H H H <6 M + # W R I * I I I I I I I I I E U OD * — 1 * H 1 M 1 .4 1 C• t 0 I :P I of I —oD I r I * oD m En N to to m W H lb N tp Ql N In r O bI E = x 0 y O * 1j cu + In In ko to r- r r W Fa D� E•I # Err 11 * r r r r r r r r r M a 9 * & W * N N N N N N N N N C4 a # + H H H H H H H H H W # I R I I I I I I I I I W # I * H I r I yr I N I N I M t m I oil 1 —W I "J # r x H m to 6t N In co H En rn x 41 + r r r r W m o0 0l o1 # "E + + * * I * I I I I I I I I I v 1 * H I N I W I N I co 1 H 1 -wI a1 1 0l I x Ul * r En O En co m m n M In H In 0 W to In W IP) 3 + 13 a# to M H m d• M W (n H (`'i %r m to M W M 0 m * N of H # d' N W N In N a; N W N to N W N t4 N r N * •J H cn * r r r r r r r r r W x C w x N H rV .••I rY •••I N H N H N H N ••-I N H N H 1 # I U * I I I I I I I 1 I In I r N I O N I r o1 I r II•I 1 0 NI En o I M MI m w I -w X # C * of En (1]N a' r N T C1 01 r to In H m W * O In m 6t m N N En N r N T H I•-i H m H In .� # •11 of il - # 4� H * W W Ol 01 01 C1 O o O W * -d W x O O O O O O H H H a # a- + o 0 0 0 0 0 0 0 0 f, x O 0 O O O O O O o P. U# u) * N P. x x 3\ 0)f W W W W W W r..] W W + N Q k a a a a a a w a a W x O 3-I ?1 x ri H ri H ri .. ri H rl H ri H r1 I. .-i H ri H N # •L W El-f - I G. - l a - l a — l a - l a — E a - I W - I pu - I P1 W ri 1 + k O O O O O O O O O O q O o cm) O O o O N f 4 o f o 0 0 o O o Cl O O O O O O O O O 0 0 E~ x N N # El + x x I f I I I I I I I I I k L 1 -4x o 1 00 1 0 O I O O I O 0 1 0 o I o 01 q-o I o O I O m x ❑ r-I # o o O O C. o O O O o O O O O O O o 0 ri # a * O I O O o O O O O O Cr) * N H G4 x N f 7) I # I # 16 N X f io x Co 0 1 AN 1 I I I I I t 1 I � x *) f o 0 0 0 0 0 0 0 0 # .0 1 ` f UY m N m N m N rn 1n (n m m N m m m 1!) m * U) • z f r ri r ri r -4r r-1 r ri r ri r -4r r4 r ri v x •.i 16 n + o o-14 q o 0 0 0 0 0 N # x ❑ [ f 1 1 1 I 1 1 ! I I 1 f H S. ❑f m )p N U) O %D Co 10 ul to r-I lD 0 to m 1p (D W * 4.) f r m r m r m W m O m %D m 1f1 m f O-11 $4 x .-i x r-1 3 O x f 04 1 24, I I F 1 I I I I I I I I # 1D x N .-i r m o r 1r) m x 04 0) * r N r o h m r r r LD r 1P) r (q r N r r-1 # N a a x N N r-1 ri .•-I r-1 r-I e-{ 1--1 x - 0) O ri ri ri ri ri $4 # H q N f x U I W x 1 1 I I I 1 I I I f 1 ! m I m I r I NI r 1 N I r I V) I o kD x N D N N O 0 ClO o q O ri o .--I o N O N O M O v' o 0 # N Ol 0.k O O o 0 o O O fL ri ❑ q O 'L f x ri ri ri H .1 ra a• H + ❑ W + i E x rA W x N x I V)f I I I I I I I I I G H # - -- - - - - - - - - - O r4 k . 1 �..* I I I I I I I I I ?1 ri + N o m O m O m O M O (V) 0 M O M o (n 0 a) W f b+W x N o N o N (D N o N 0 N 0 N O N o N o d H + 0) 'd * O O O O O 0 O o O O x W fJ + N N N N N N N N N z a r>ri a x I # I r I I I I I I I H co + ------ - - - - - - - - - - -. rn DD W x I N + r-1 I tl• N I v lD I m H I w r I r N I o M 1 m m I (•-) v 1 N W H U + 'd ',� x O u1 W N lD Dl 1/1 r M m N d• ri N O m o ❑ FC # ri 1D r$ # N N H . ri r-i 1-1 1-1 ri .A H H �. * W 0) # N O ri O 1--[ 0 N 0 ri o ri O r-I O •� o 0 r• 14x H N W x I x I I ! I I I I I 1 U - GG * 1 + cD 1 v I r•') 1 u1 I ON ID 1 v I C I 1p r 12 W * f M 0 m 0 m Dl )f) ri r E. k r4 r/) # 3 F:C 0 04 # o o rn ON w m m r L4 + I f 1 I I I I I I 1 1 l!) + I f o 1 0 1 0 1 o I 0 1 O I o I o I 0 1 fn f x O o o O o 0 0 0 0 N f f r� O O f N * kp to lD da Ol x d U `~ ri .--I .--i ri r-1 (d M * + a * I f I I I 1 1 I I r F. U OD x - I + W I I N I c 1 N I 1b I N I .o I m 1 1D 0.• I x k H O r N oD O o 0 lT E x Q) .7 41 N G• 19 h 00 Ol N N O # 4-5 Q) x w ao OD co co DD (n m Dl >•{ N E+ # Ia r-1 # r rr r r r r rr r r a 14 4 * .c W 11 N N N N N N N N N W a x x -4 i N -1 -1 ri 'A r N W x 1 x m I N 1 tl' I Ol I r I DD I m I m I Ol I f F.1 # m m r r-i lD ri r M c D1 Il # J-> -- f m x p F. x f N W * ri ri k # f I f I 1 I I I I I I { x I * %D I ri I r I u7 I tD I C. m 1 N I O { # N f N to r u-) m to O 1P) m U7 r u7 N V1 r u') O u7 3 x J..) 04 x N m m M v m kD m %D m r (n 00 M DD M D1 M •3 # N N ri * r N r N r N r N r N r N r N r N r N * > •-i m x r r r ri r r r N r r r oD + !; W + N r-1 N ri N N -44 N ri N ri .--I N 1--I N r-I rl ri ri ri ri ri ri 1--1 r-1 I x I U+ I I I I I I I I J 1 x O I r r 1 ri m I r NI MW I o r I r 0 1 No I N N I ODX x q f u7 14 lD o cD m u7 r N 1D m a M m r N D1 O W # O : * rD ri r .-i DD o m O O o o 0 14 o rd o -4 O x •r1 (D x f 4-1 1-{ x O O O O r-1 r-I ri N r-1 W # 10 W + H rl ri r-I -1 ri ri ri ri 1-] # Y \x O o O O O O O O O W to a * .-i r-'1 -1sK ri r-I r-I 1--1 .--4 O O C. i!] k 4-1 W # k '$ m N# Ln k $4 (L# x N # z W C. i �� 1 —o I pOq —O I * + o p o 0 r k N N* O O O E- # # * 1 k I I 1 W + .$ ❑ .-I k O O O O -1 k ro * o o o O * H * N k 'n W CI I * ri N 41 * m O 1 x k 1 CA1 I I * E-H I k I I I �O + JJ w + O O O + A'. 1 C * o O V' O # u z k rr o •4 0 GY + -11 ro k O Y + N••i k r-I r r ro + x ❑ I k 1 I I + O ¢ IC* E•EA n* r o (n O + N k N O u! O + 0•O w k ri .3 O + N N * w I 'Z. * I I I + I I 1 # ro * M 'o * [- O to k -r1 L.1 * C N N * 11 LL :3 041 k •.I N O k H O H k —— # I + [ 1 H — 1 ID k $4 .7 l-I + O O O O 07 41 S2r+ O O O z * �H ❑ + M C H k :3 W # E + (n W + m * 1 v1+ 1 I I 0 a + a 1 1 1 N W * b+W k N O% C. a% s+ a k FI w+ w w w O k W (J * N N N H m — W OD W k 1 41 k u7 I O I O O I A .-1 A• * .--I ro � � m O O O H i-I Oi # •J x Co k > N rn * W # HQ (n ad + I # O I 4n I LO 1 E. # .-4 rn k 10 f w « r (7 $4 k sa NO d1 k # O i O 1 O [n + k O p O 0) + ".{ 01 O * W + lO to lD 41 4d M + * W + I + I I I ; U OD * 1 k u) I M I M I 11 9 P31 co 9 *III $4 M E = k N b O * 11 C7 + rn o O 1-1 E + ro .-� * r co o k .-A .-+ .1 W # 1 + I I I W + — 1 k Lr) 1 M I N I Cn k y) * C O O # LL E + # x k 3 # I I 1 * I —+ O I O I H I .3 * 11 k a% IT O 61 M k $4 •J O+ O x a r011 : v rr M * 0 W N N of + H I 1 * U + x + — [ I —k p 1 W 0 1 0 0 1 W * O * N N O N * 4j + w w a * v # O Q O O * 4n a + r-i g r1 N u. * * RCFC & WCD HYDRAULIC CALCULATIONS (NAVD 88) LINE "A" AND LATERALS N r 7 o rl • rl m O m W Z l W E m m 0 N r � aJ o ro N 0 r v C7 >• z H u)M l0 O 14 �+ a z 0 H N C E v O H -,i z UI H $4 6, vw � > ❑ r W o C7 0 z a z z-i U< a r 2 E. En rn U H ❑ H a Deno Ew0 a Ha • are fn" 0 o W as o �9: .a lL N o E N H Ew S w E 2 Tip W E E. aau) Q a a a Q w 3 a ri o m N a H Co E. E. w o C7 0o00o00 U E 1--4 H (D000 o 00 4 if) 0 NIt!O O O N O � O O Sri ��(J�f1 d'l0 C7 H W fY. H H !L E P E. m ❑ o rC H a 3 a H wa o� aW a H H H [q 2 a N M 3 CxH c J cctra mM x x w W W G7 Sa E. $ $ 16 W 2 NNMa'inr H m .4 0 a 4� m C7 C4 0 z z z Ca W H H H w a ❑ ra ❑ ra a F:40 ❑ ❑ ❑ ❑ ❑ ❑ ❑ U U U U U U U U U W W W x x m x x x x x 0 0 0 0 N O 'L z z CD2 z o z o 0 0 o 0o 00 0 0 rho o o 0 0 z a H W W m H W M H W H w o x o 0 O x o o x o o x t7 Cz90 a o 00 LD0 0C, ao c) o 0C> A, 0 20 Coo a0 a IQO o z C) at z C. o � � �� o �� �� o M M M In N C H V' H V• H V• x x x x a a a a w ow w w w ow W w Ow w w Ow ao oao .4 0, atO ao o 140 ao ao oam am 170 o ao (90 d OC70 i70 ChN C70 V OUO UO UO V OC7 N [70D C70 c0 C70 o I o o H o 1 zo zo z a• zM zo 1 zo m I z 00, oEc �a Ft a N a a FC FC a FC M w M w W z I z I 1 z U) H V) D V) V) U) H V)O V) 0 H co W V) V) H V)O '.7 0 O D o D O D m D o o D o D o b r-1 o D o D m D 0 o O 0 H O M 0 H 0 H O H m H O M O H O H o H O M OD H O h i m H O M N H O CD, ❑o+ I Ln0m E- r� ❑o ❑ m no + I V• 0 no ❑ o # I OD ❑ Qm ❑O + I N ❑ a°D w%D M ww a WtO d wto W m >N r-I •J N .'� N •>N V) z r-1 z ri '�. ri z ri V) N H H H H r-I .�'. O O O O O O O O O O O O C Vv ' Cl Cl a a o a o 0 0 0 0 0 + aD # W # o + m M I- M N M r (0 m Cl a am a0 M m M M M (") M M M M M (n r-I -188r-I ri r'[ rl rl r-1 z z o z o z o z o z o z o z 0 z 0 z 0 z o z o z o E- EO H N N N N .] 10 I o 1 o I o U + G. ) (N ) N I m I r mz a a w F. E E E E E E E. E F E E N U W U.i U r 1 U + U 1 L) Sri L) U It U 1n W W W w W W W W W w W W W W m m U) V) m w O m V) co w m CA + + # # # # + + + # W Eo Eo No Eo N o Eo Eo Ea E+O E o CE.4 E-lo Eo H au, wN win win am wN w (n w (- DIM NOD wO• wm wN H Wm wM WM WM W co Wm Wm Wr-1 WM Woo Wm W .-I WN O z I� z 00 z 40 z m z m z 0 z 0 '�.• ri '7..-i z .-I z •-I z N z M pG H 1)') HLn H In Hl) Hv) N� HtD H HAD HID H"D H w Hto M N N N CV N N N N N N N N N W U + O # (D + o % o x o f O # O # O s o + o # O # O # O w z V' zO 0 zau z�n 0 zN zCO zN 2N '�..N zN zN Cv Oa O� ON Otl• OtD Ow OM OM ON ON OHO Om Om w H H H H H H H N W H H H H D E + El OD EM El EIO Fr EN E-E El EN EM Er Ern N FZ rl FC tO gC r- sy'M 4 N 4 co 4 m Q N FC Ln r•C w r.0 r FC ri 9(,4 EEo FO EO EN EM E. c• Ea EM PLn EL) E Ln E� EtO W w V).-1 V)-4 U)r-I U).--I V) -4 V)r-I V)r-I V) -1 V)).--4 V) 'A V)r4 O r-I V)r-I E E+ 4 D S 0 .4 4 z 4 4 4 4 z FC 14 9c 2 4 Fr FC z 4 F. E. O E. E. E E O E E E. 0 E. I. E O E DI0 xQ E ❑ OCG xa OCQ E0 O xn. E. 4: Q :9A EQ E U U U U U U U U U U U U V) U) r$ V) z V) 4 V) V) z V) < V) F4 W zp V) �4 VJ 4 V) z V) -D• WI- D-- W11 wI- " D-, w11 w\ h 11 D WD N D hD h 0t3 pGD D mM wD C4 r) D wo wo d Fc < Fc a a FC 4 9 4 4 FC FC Ul U) to ca to 0) V) m U) U) W m En H H H H H H H H H H H H H W N M C' N W F w m O ri N M r-f ri W W O O O O O O O O O O O O O z z z z z z z z z z z z z E E E E+ El E+ F. E. E E. E E F z z z z z z z z z z z z z W W W W W WW W w W W W W 0 � S F4 1 fA w w w W W W w W W W W W W W a a a a a a a a a a a a a W 14 51 w w w w w w 0 w w w m m w x to 90 10 90 �o El a w a a 0 0 0 0 0 zo zo zo C. zo zo a4 Q • rC FC ra w 0 zo .-1 0 tw-1 61 rW-1 o a 0 ao z0 z0 a0 L cn d` I oo po po �o rQ o q o ra o rn o Q o W e-t W r-I to r w N r-1 # M f 7 M M O T ri rl -1 rl O rl zo zo zo zo � Ln Zo # # # # # # # U Iff U Un U Un L)Ln U co 8. 000 N M N N to 0 In # am P4 � aEGM aE4M aM aM a z M z z lD z l� z [� z1� z i� H w H lD H lD 1A'D H W H lD H 19 N N N N N (,4 N ri r-I ri .--1 ri r-1 r-I o f o f o f o o+ o 0 2 Lr, 2r- 'AN Zm zCO ZOD z OD # OCO O r-1 OLn QN ON ON O N F-1 N N H W H • ul " E+ M E-E r-1 E E N W E N E. m H In F4 Ln 4 o 4 M ry u) 0 4 un 4 Ln a in E kD E CO F OD F4 M Z H OD H m 0 H OD to ri U)r-1 U) -4 U)r-1 CO-4 M ri ^� Cn ra N � z w o x 'n ma as0 aA mo wo x �n � m am a �n � � am mm W5 ao ao ao o ao rnM> a d F�t a va rn v, U� In cn H Fi N M H i-1 w n lD r m m o rl r-1 rl r-i r-I N d' r-1 z z z z z 2 0 z z z z ,H z z z w w w w w w w w w w w w w w a W 0 o O O o 0 0 v * .�•r1 U x # a M * k \ a)x W W W W W W W W m * m (Q1..x a a a a a a a a co M # O N ?1* .--1 H 14 H .d H r4 H .-I H H r♦ H .--t H gm Z a E x — I a — l a — l a — l a — I a T I — i W — l a — i s a 1 x # o O O o 0 O 0 0 0 0 0 0 0 o O o 0 E * I x I 1 I I 1 I I I I * — # 4-I 1 .-1 * O I O O 1 0 0 1 0 0 1 C. O 1 0 —O I 0 1 0 O 1 0 O I O CD r1 x O O O O O O O O O p O O O O o o O rl * r6 x O O O O O O O O O II x r0 Sa X [� # LL 0 1 * I I I I I I I I I * — — — — — — — — — — — I * \El I * I I I I I I I I I * it G4 # O O 0 O O O O O O x F 1 # O rn O fn O Cl) O (n O m O O M O M O M f OI .Z * In ri U'I r•I In r-t In H rl'I .-S .n ill rl 1n r1 in ri 4-) # Q)•.� f ID lD td 10 l0 to l0 l0 tD C] * - O I * — 1 — I — I — I — I — I — 1 — I — I * 41, E �'-. f] [- rn 1- In m cn m rl O m rn (D w rl CD rl * * .-1 r-I OD N .•-I M rl v N m '-1 N '-1 N rl N . . . . . . . . . . . . . . . . * O•11 w * to Ln v M to v 1r) v In v 10 1rl ill Ll) � 1n f rig Ox I I I I I I 1 I I 1 # rt * m 0 r m r to to * O F N * O O O O r- ID m 10 co o I'D o to O O M * 4-) '3* M M M M M M ) P. rl rl rl rl * -11 N O x N 1n -4 to 1n 4l .n ul * S� A ►i * # U I 44 * I I I I I I I I I * — — — — — # 1 F * 1 N 1 1 I- I r^ I N I I 1n I '-1 I r1 O * S4 .- 4-1* O N cm) O O O O l0 m OD O 1n a' C.) N O N O C7 # N N ().k O O v O O rl N N O (IZ * N"-4 ❑* U) w u7 u) to .n Ln v H * �j W x 1n H E * In W U] * I N x 1 I I 1 I I I i I O r4 # 1 * 1 1 I 1 1 1 1 1 1 -1 * ?i r-I * (A to N rn Ln O) . t0 0) N N N U) ri t0 r 10 Gn W f C1 W * P) I•) [h O OD r to O to N rn O) N N to m m Qf H x 0)27 .'C # to to l0 ro r r r m m > W k {$ F1 x to l0 lD t0 .D l0 l0 Co tD O 4, W 0 f N N N N N N N N N z a * * .� r1 r1 r1 r1 0 a * I # I I I I 1 I I I I H m # —..-.— — — — _ to OD W * 1 N# N 1 N ^N I to m I M m 1 v H 1 to N 1 N 1 N ri 1 N r4 1 0 W 1-1 U * 10 5 * N t0 0 0 7 0 10 rn r- .n m to r•1 co H to N y * m O M O N O N O N O N M (D m O M O H U] # 1 # I I 1 I I I I I I P4 * 1 f .-1 1 to 1 N I r'0 1 0 1 r I ! c I v 1 I Z r 7 # — * v m 0 r-r N v E. f r1 In * .'�..A 4 x 4) N f 4 M N [`'1 M m S. 0) * 1 # 1 1 I 1 I I I I r a UI E * — — — — W z x I * O I O I —O 1 O 1 O I O I O I ^O I O I to W V. * M M N to L) Ln 1n to 4l U1 �. k x .0 P4 ❑ * Co Ca * ,-I '-1 0 O O 0 O O 0 .k 4 W * U x v �r a c v a• v v v U acnm * -- # 10 FCC H ri * a > w x I # I 1 I I I I I I I .3 W rl * —— — — -— — — — — — — — — in, Ln* I f r- I H II Ln 1 m 1 to I ri I CD v 1 t0 I r6 0.• F O x # to N -1 1n W CD O 10 31 14 b� E.. < * N :1 s H 1^ a 01 11 m O # 4-I 0) # M M v v v to v 1n Ln W Z * .d•••I * to co t0 to W t0 W t0 t0 N O W N N N N N N N N H 7-. ?•�# * ri .-1 r-I rl N rl .•i r•I .-I In 14 pq * —— I —* — I I — ! I I— — 1 — 1 — 1 — I H # 1 * r 1 H 1 NI m I t0 I 1n I v I v I v I X * 0 x r-1 o to rr m 0 0 14 r-1 * V * N v O to tD In N N N f ()1 E x x UI 1=4 * un .n t0 Ln [n In IfY to * # * I * I I I I I I— — I I I * 1 * O 1 0 1 0 1 0 I O I r` I r I 0 1 —N I x O * LO If) N Lo N m N In N d) O N m N to N '$ # +1 R.* o) t0 m IT m w N t0 M to LO to to m t0 to W O * O to O O • O O Cl O •� # Ul a r-1 * r O m O m O 0) O 01 O m 6l O 6) O O O # 'J r•1 rl) * N to O N Ln U) LO a LO 10 t0 'J * d W * N N N N N N S N N N N # H # rl rl H * -- I U * I — I I — — I I I # I * 0 1 0 O I W O I t0 l0 I v O I N N I U N I m O I O 0 1 0 J-) * (.• x v to O H 10 "1 0) m m Ih ri H r1 m LO m m ri * O * v rl to W N f~ O1 v v m rt'1 # N* J f *l F.3 * ri IO m H r- Q) N O M m r- ,aQ r- Iv O 1> <` Qn W * -) W # (D u] t0 U 0 v N r-I M M r �i Cq v N O N rn 1•� # U) \* O O •T-. O .-1 N N N O N f•1 ri v H # [n 1.7 * rl ri w7 r-I N .--I r•1 �•1 W c-1 .y Ge x N * p. u* O O o 0 0 0 0 0 0 * 4.) M 3 f x \ m* W W W W to w W W W OD * to P,P a w w w n. w P. LL W W M * 0 �l 9.* r1 H .--1 H H H .-i H �I H H H .--I H .--I H H H F4OD —w E * — I w — I w — I w — I w l a — I a — I 9. — I a — I L4 w 1 * # o 0 0 0 O o 0 0 0 0 0 0 0 0 0 0 0 0 tU * F7 OC. x p O O O O O O O O O O O O O O o O o * N N E * 1 x 1 I — -- I I I I I I I * — — * 31 1 -1 * O I O 0 1 0 o I cm) CD o —01 0—O 1 0 —O 1 0 O I o 0 1 0 co * 3 ❑ .--1 * O O o o O O O O O O O O O o 0 0 0 0 r1 * to # o - o o o o o o 0 p O * O) H kt * N * 0 1 + I # ro St K f r f In 0 1 * 1 1 I 1 I 1 1 I I 1 I t w * i) [•1 * O O O O O O O cm) O + 4 1 : f O M O M O M C. M O m O M O M CD O M 4. m z * to .-1 V/ ri to .-1 LO r1 O .A O -4 O -4 O .•i O .•-1 10 —' t] t —x — I — I — 1 — I — I — I — I — I — 1 * 04 1 * 1 1 1 I 1 1 1 1 1 x 0 a* * F 4 o * to m M -�r rr to o o 0 0 o M o co f y) m o r O o 61 o m x .i "1 O * v a• to � to C v v� M M * Cav 1 7-• # I I I I I I I I I # qS * M m O O o O x U.4 0 x w O v co ct' m co w O w O 114 O 0) (D 0) O * _4 J-! '0* M O M M M m r- r- r O 61 Qt * V P� :3 f * •ri tU 04, to ••i N to to c C v' M rn * U Q I [v x 1 I I I I I I * 1 .c x 1 1 to 1 .n 1 1 0 1 N 1 1 o I M w * s1 D a.) * o w o r M r CD 0 o m o 0 0 0 0 0 N W p,# O M O .f1 to O O O O O 0 o 2 * a -4 ❑ * to io to . r a• H # :3 W * to w - E. m W 10 * I m x I I I I 1 I I I I 0 a •.i * ^n H # M 1+1 0) 0) Ir V• N to to w to M m o w to M (n W * 0)[4 * Cl) C. H Q' ri w O M O LO N r O w -4 m m >a a * s4 w * [.. * u * w w io w r r r r r O + W Ut + N N N N N N N N N 2 R'. # f c-I H r-I •--I .--I ri r-1 r-I rl C7 11 f I * I I I I I I 1 1 HOD m f —— —— cn co W + 1 O)* LO l tO m I M m I v r I M Oi 1 '4 0 1 W m I a• M I t0 M I w W -1 U + •O .7 f ON tO v1 to w io r to r LO r to r to to to to to 4 f o o o o o o CD o p U) W * N O N O N O N O .--t O H O a-I O ••-I O ••-I O d 5 * x m U 0} * f * f I I I I I 1 I I PG N 1 # rn I O I a• I to l LO I to I LO I M I M I I z W * x r is .-t M r r r (n 01 E * •-I 1n + 3 14 Q' # N w * M N M M O O O 0• 6t ro m * > r24 x ri .-I N r-! ri ••-1 t--I (7-1 * # N m * I * I I 1 1 I I E 1 I 11 N F x -- — — — — - ---- — — — — — — — — — — — — m z * I * O I 0 1 O 1 O ! O I 0 1 O I o f O I m lVw x 2 m m (n a1 m 01 O O O 14 C••) M to N ro a n f Ot Ca * O O O O O O O Ol m U W MOD* ro F4 H H f * a ^✓m# I # I I I I 1 1 I I I — H P4 N x I * w I G• I —to I m I a' I to 1 d• I m 1 ro rS _ o* # r- O 0\ c to 1n OD 1D ri F s a4 * N r m tl f r rn o v O : # aJ a) * to w w to m co m o 0 11 7. * ro r1 x w w to to w w w r r w O W N N N N N N N m .4 M i -- I —* I — 1 — — I — I I * 1 * —w I C ! to I 01 1 V' 1 w I @ I m I r 1 N ••-I r t-i tT c N r m O * 0 N # N w * to to to to to to co to r # A * * # I # I 1 I I I I I I I * I # O I O I 0 1 0 1 0 1 O I O I O I CD # O) N N to r M CV M m M v w 01 N e-I 01 N •3 f 41 CL* m a' Ol w 14 w M 11 m to 01 to r-t m N to M w 3 # N N -1 # O O O O •--I p t 4 w .-I O r-I O N N M O M O D * ( W k N N N N N N N N N O) # H L' * li to * -- I U * — I I — f I I I — I I I 1 * 1 * o I W o 1 o O l o o 1 M o 1 0 0 1 0 0 1 a o l p o 1 0 41 x 0 # Ot E. to m m d• N F. N O N O N E-t N M N N F. # 0 f: # w U) M Cl M m N O N M to v tT 01 01 m m M * rl N+ . . . . . . . . . . . . . . . * (0 •--I * r Ei N to N tl•1 M F N 11 1- C• r F t!) r M r W * -) W # m U 61 M N N to U w N r c w U N N to v .] * W \* d 'I d o to Z u-i LO q w 2 w w 1 W * rn a + .-t h �i .--I r-I h ri ••-I tW IOD r-I .--I M # t1 U+ o O o 0 0 0 0 x a•.1 a x OD f a1 p + a a a a k W f7 x O -1 l7 # .Z. 0.. E + I W l a l a l a I I P7 I a 1 # x C. O O O O O O O O O O O # O O o 0 0 0 0 o O O O o # N N # El x x N # I « I I I t I 1 I + 4.) 1 ri x —O 1 0 O I O 0 1 0 O I O 0 1 0 1 0 0 1 m + `$ Q -1+ O O O o 0 o O O O C• O C• r1 f 1a f O O O O O l0 . �O O + N N D�« N + V1 I + M M 1 f RI 11 >C x N N r + Co O 1 # [ I I I 1 I 1 f — — — — — — — — — — 1 x +1 V H I x 1 1 E I 1 I I + W # O O o O O O O + ,!~ I c x O M O M CDO M CD O # z « O r-i CDli N o .--I O O r-I O W # •rl•r10 C # O O O O O l x ti> ti'1 J� Vl lf') l0 • lD x C).— I —•� � I 1 1 1 � � « o a# # H X ❑ f O o m o IV C.) rr m v o v x +I + o 0 o rn o m m f O•r1 14.0 r-I .--I ri N rl M M N M « .--1 I rZ.+ 1 I I 1 I 1 ! x i6 x O O O N O « 010 W f 01 O Ol O Q1 O m r m CA ri m + .r1 i-I 'd + 0) 61 dl 61 Cl N N x yJ w 0 x # +i W O # M f4 f•1 th frl ri rl « 14 ❑ 14 « x U I Gv x I ! I I 1 I I # 1 4 # 1 0 1 0 1 0 I C I I O I it YI .'>' V# O CD o v' o O O O o C. 0 O I;q f 4) N P.x O O O O O O O v H # 7 W # ra E x rn W x fll # 1 rn+ I I I I I I I o a « I « 1 I I i i i — to W f LT W + r N ri O N O N O N ri O r-I 1.1 r7 + 11 N Cu# N H + 'O x N M M (4 M C 7 W # G 1a + r r Ir r14 r O 1, W (9 + N N N N N N N N N z CS.-I W « I f 1 I I I I 1 1 V)m W x I N # M I tD M I �O M I N m 1 0 0 1 M I .--I M I > x Lf) N IA LO 1n to l0 1n m O O O Q a # .--I 16 t$ # O O O O O H 11 D4 x > W x -1 O -4 O -40 r•I O r•I O N + I-c N # I « I I 1 I 1 I 1 Ux — --• — — — — — — 04 « l + M I M I M I N I r I r I t^ 1 I z W f # Ol p1 41 E + I W # ri 4 f v a x is rn rn o b # 9 [-4 x r r ri f7•$4 # # w m x 1 x I I I I I I I C!1 z # I + O 1 0 1 O I O I O I O I 0 1 N £ * * O O O O O O O m b+ E. « OI + N N 1(1 N ul m 0G Q x co 4. + 0 m m m M 0, m X a' W # U # ri r-1 ri r-I r-I ri ri t6 4H� x # a >co 1 + 1 1 I I I I I ark 1 # — H .O It1 # M I r I N 1 O I M I V• 1 V• 1 rt ct O# x IT LO o w r N N 01 H PC # W D 11 O x }J 47 x .� ri ri H ri o V' G. o W # ,$ w W # N N N N N N N N H " M to f4. m # 1 # I 1 I I I 1 I + — — — — — — — H « 1 x M I r l O I I- 1 M 1 Vw I M 1 + J•> f IT M O to M 0) 01 f N ra. + l0 to to C d' 1D 10 x ❑ -- f x + -- I f I I I I 1 1 I x I # O I O 1 N I a• I O I O I ri I # Q1 x r1 N ko N O N V' N M M M M .'S + iJ Q.# M tf1 N N r N O u'1 ri r-I O 11 3 + p1 v ri x o # '> -1 vl # W to - lfl �O U l4 l0 .5 # C W # N N N N NZ N N N x N 4 x .-1 .••I ri N -1 rC ri r-I 14 x I U f I I I 1 I to PG I 1 # —— — — — —H — I « I ^x O 1 0 0 1 ri —r-I 1 r m 1 N 0 1 'Z. O I O O I 1-1 + C # r LO N r-I M m r-i l0 CD W O O m # O 4 # ri M 1A O v1 ri r to N N O N x rl N x # J-I rl # .-i 1n l0 W V' O O ra N I-] N r' Lf W # ro W # O m M aT 1A to 14 1n Ln H « V a} 'o ao OW-1 m m r.0 tp co w # # N O O Y O O O O 9 O r� O N F. M � O O d w z z E. C. F F E. .--1 U-- a a a H a a FE m W W o 0 o w o 0 v a-- (7 cD r�no 00 (90 a C) t9a c7o ElW a /y� �� � M 1011 � CD N W W co H m o w W w ow W w N rl 0 '1.--1 0 o 0 ,4 O �l CD rl o I 0 O (7 M U' O O• O(7 cm) (9 O (� O H 1� Z O ZOi ZO I •'X.00 � O W �D 0 to U) H N O V1 U) 1) M)0 DN •f70 0 .70 .70 .70 N ?+ HO HO HO MN HO HO HO A CDO O O k I N O a❑O W In C3 a M P4 U; W 1.7 CDW tD a N wW >N wo, N z H U)N 1-1 U)C4 s-1 1p $ O ; N 4 0 ri O o �+ z H OI E U)M O Ia >+ 0 cr z o 1 O k o H N C E (n O � as I z H Q) W 1 � ❑� m m m m m O v 1 W 0o U H Z CD Z CD Z o z ID 0 04 N z o Zz > O H V! U) F. E+ 'W H Q W H 11 O IW-IU o3a � 3 ❑ a F W N OOpG Q UU * H H I-2 ad •N a I N er W O 0 U) w p: U) z a N N 0 EI U) +(�� W E+ E+ E E E+ E E EH H E. U H U H U r1 U e-1 U M U(9 U c U V• U V' $ w H z I W W W W W W W w w w C7 r1 x I 't" O 1 0 U) U) U) U) U) U) Cl) Cl) W W E E It k k k k k k a W cn ❑ O W P4 W E o E o E o E O E o E O E.o F 1 F rI 'J 4 H O .4 ai Q 0 P4 I•') m N z co P4 M a N a N a N P4 N p4 N m U) Pl $ 0 H m W H Wr wr WW W0 Wv W0) WO) Wa) Wo) W r1 UJ w > - > • > • > - > • > - > H O O z.-1 z .--4 'z --1 z N .ZM 2 ZM �M M 2M W HP4 N 0> 0 � P4 H%D HW HAD Hl0 HW Hw HW Hw HkD E W 04 H W a N N N N N N N N N 3 E. w W -1 w •, •i 1 r, 1 1 1 (7 0,00 0 U E = O U % O 4' 0 k O k C. O K 4 O k Cl O H 0000 Q,' N '•D 4ZW ZO ZW ZM ZM Zm 'z. CM Zcn zm W H NNOO k� z I O 1-4 ON ON ON ON 01- Or 01- 0r- OIr x ❑ P4 O d, P4 H H H H H H U)H . a' NN W r' . H D E W E",N EW E",W END ED; W EOl FN AGFN N W W F4o 4 '1 ItM 4T 4r- 4kDU 4 D 4r_ P44Ir P4 cn H F EO F0 Eo FO E0 E- Z Er1 E- -4 14 x Ix H.' �• W 1W1 U)H 0 .--4 U).-1 fn r U) .-i 1 U).-1 9 U),-1 Cn-4Q Cl) .-1 a o o ro F, a z W W H o O sy cC RC rC z 4 4 W < < aC A. > z E. E. E. E. O E. E E E E+ 4a E0 D 00DD(ilwa x0a E W wa Um � a) QN zrn a))m O� >+� W� W w� ❑� W� 3� W >1 O W .--I .4NO 1 1 1 U) .7 P4D P4 D C4O hD PGO 5 a 0 rnb Z a H H H rC KC < 04 A FI Q W U) a) U) Q U) co co Ur r-1 N M H H H H H H H H H 'S U H d'd'a• M 0 OZ. 00 i--1 N cn a' N lD Ir W CA IJ W W W N E z z z O O O O O O O O O IC U O H N m v H H H z z z z z z z z z I w z .] rl .7 1) U) E E E E. F. F E-E F E 0 0 0 z z z z z z z 2 z z z z w w w w w w w w w W P4 ❑ A A A W w W W W W WW W rl 40 Q Q Q Q r.0 4 4 ,a a a a .a a a a a U U U U U 0 0 W W W W W W W W W ,A # il. .0 + 0 0 0 0 0co 0 0 0 N x N Oa x W N R, L4 W �C W # O H H H r-I H .--I H N H N O Q 0 0 k z w E k I Q+ l a I 01 I 11 I aL I I m 1 � --- — — — — — — —* ------ w r1 1 — — — — — — — * * O O O o 0 0 0 0 0 0 0 0 In (D a) + a w # 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E x N N # rl * * x - ----- - - - - - - - - - - - - - - - + N I ri+ 0 1 0 0 1 0 0 1 0 0 1 0 O 1 0 0 1 0 1 0 0 1 OD x A H+ o 0 0 0 0 0 0 0 0 0 0 0 0 0 ,A # ro x 0 0 • o • o • o 0 0 • o O # a1 H [s)# N k co I + H H •� # rn O 1 x # I I I I I I N I N r-1 * ------ - - - - - - - - - - - - - - - I # \F I x I I I I I I I I � + J-1 [s) + O O (z) O O O O O x .4 1 : # O M O M O M O M O M O O V• O # • 'z, + )n H M H 0 H In .-i O r•I O O H O 1) + W rl + V' C C' Q' N N W m I I I 1 I I I I + LL I * 1 I I I l 1 I I + O ¢k x E Al, ❑ x O to O to O %o O O O O O O O * � -P * O N x N N N r•I r•I r•I * f=. N N! z x I I I I I I I I * -- - - - - - - - - - - + I I I I I # Id ro * O O O O N x V 4 N + [- o r o r o r C.) r cm) r cr C.) c x -A 41 •O x m rn rn Cl o m m co co + 4) ❑. 0# # .•.{ a) O x N N N N H .A x S� ❑ >•t x # U I CL # I I I I I I I I # 1 p# I N 1 0 I O I I i I I N I � # H •J 1)+ CD, W O O O m o m O v� C.) o m o o l7 # O) a) M* O o O o r o 0 0 0 w H + 7 W + p .A E + N W k u) + 1 u)x I 1 I I I I 1 I - o a + 1 # 1 ,Ax •,�r-I x cn r-i O r N m CDOl lO co V� 1.0 O �o V) W # (T W + H o N o Cl) o G• O M to O r o r Qy H * a) a to x 6) Ql Cl 0) O r I N N N > k+ * 0 14 w �o io t- r r O * W U + N N N N N N N N u)OD W U * I a)+ V' I r` d' I r V' I l� V• I r In I ri n I O I O CDI DI-1 U H + 13 .7 * Z N ro N %0 N %o O -W W -WO O O A •• 1-4 5 x a) 0) x O O O O r O H O H 14 O4 FC # •3 x r14 441 ,H a, V) A * I cn x I I 1 I I I I I 0 1 0 1 O I CD I co I OD I W I to 1 x a V ww cfl M rn 'd. rt; La ro W + w + a) N 1 + I x I I I I I I I I u) z O x I ^* O 1 ^O 1 O 1 0 1 0 1 -O 1 0 1 0 1 cn W r-I * + Co Oo Oo Oo m m m m m X + k Pt W 4, Ot W + 0 0 0 0 to w io U R1Hm # # cO A. > r•I # # Pa W u•)* 1 x I I 1 1 I I I t alto+ ------ — — — — — �.. H b+ I + O I C. 1 ri 1 N 1 N I .-! I Ol I Ol I ro FC : O* + N o W O W � ul SI 9 N + )a M H I * a) 9 + O d. * i) a) * OD m W OD W O N N 14 '7. + ro ri # to l0 to to to t- r r 0L O x "$ W * N N N N N N N N rn rC tOx 1 + 1 1 1 I I 1 I I u) .4 x ------ - - - - - - - - - - - - - - - I•-1 # I # o I o I r-I I N 1 N 1 H I Ol I m I $ + .G * N O M LO M O O # +)- * m m O r v m 00 # Q E + + N tse * to ID tp ID v1 tp m m + # x I * I I t I I I I I + I + O I O I CD CD O I O I O I H I * a) x M Ln LO O m O mIn wU') )n c In # 41 LL# r� )n r In aD 0 O O V• ') Ol fT O Ol .'3 # LI 9 O x o 0 CDr CDO rn * a) a) H x r-I O H O H O N 19 M O M W M O M 3 # > H cn + ko to �o ko Lo U ko io * [ W x N N N N N N z N N .--� ri r-I r-I .--I -1 H N # I U + 1 1 I I I I I 1 In + I + O I O 0 1 0 0 1 0 O I 0i 0 1 0-O 1 •z. O I O o 1 m N O ko to r (n E M O M W M O M IC F, + ul �D N O N N N r O r r O r` + J-r -4+ co 1. N W a0 C0 E io M 01 a T M N W x ro W x C. .-1 N M N ko U r m ko a ko � a * Y \# O O O O z O H R H 1 H + cn )a + .A H H 11 •J r•i r-4 r-4 H to x * 17 N i(1,--1 O r-I N F O O MN O O r W z Z E E (9 low •• rc 0) W W O O °ii� a a zo zo 0 m N N o W W N U)0 CUO 1= zo zo ui .o W W Y 'w7 O C7 O m N Ho Ha Ca o qo o r❑aC Wrn PG Wo -4 14 N W ao W v Ul N W kO I to 3 3 N C7 �+ z H E+ W M oat az H N 0 H OH }+ U) 2 F $4 Gu N W 1 •J q M O C 1 .4 O z zo W U) z0 W o 0 H N C7 z W z E cn W U H q I-A ra H o ? 0 z A E. wN . 114 a � v H a a a mz 1 N tall O E. W # E+ # E+ # E+ ' F. * E. 3 W E E {{]] W W H W H W N W N W N U z S1 W co U) W W U w W E- a, cd (n ❑ O W E+ W Eo Ho EO EO EO •.7 4 H O i t IL' i.1 9 O Ai N p4 N OG N PG N W U) In m O H Phi "1. W -. •y cr ; d, W c• 5 m 3 a o 0 cC I O z M Z'D z�o l� 2 ko W ri P. ri a O PG H lD H to H l0 H 10 H to E+ W a ra O m a N N N N N 0 x W W ,Hay 14 � W .--1 ri e-1 .-1 .i U' O o U P. ri U # O # Co O # o 0 H .0 m E rC a• rt+ 2 O 2 co2 coz coz m W H 1n o k, N o k, O Ln O •-1 O.� O.� O A (] P( 2; 1 (4 H H H H W H NOD Hv Eco W EIo Ha, S-4 0; P4 W E Ho Ho ZE•HO Eo0E- c) W a' m sHC P4 W rn_4 m rI r.0 U),-I U),� 3 U) •-I a O o Q .E7 z W W H o 0 cC FC W k< 4 7C 4 3 E+ E E. E. E rya Wo xo ao mA WA N M U) W U) FC co sZ U) co W 0\ >..\ W\ $\ W\ N\ O W r o I 1 I W 5 w LD D pG b V) b z co co fn a H H H Q W W W W U) W z a •-1 N M H H H H H 0 U E M Z Z '1 N M a 1n N m w w W m U 0 •-1 N H H H z z z z z ) W z a a a 41 W z z z W W [za N r2.] ❑ W H " H d QFC aaW 0 0 q 9 a .] 0 U U 0 U 51 x W W W W 14 W H # Ia. e+ o b o b o 0 0 0 0 M % A•H U % kn % 4) L1 # W % In % a x x x x x x W cn % O Fi % H H rl O O O O Q O O O C, O C) O O a * '!+ d E % I P. — I — I rn I 00 — I no O O Cl O O O O O C. O Q O O O % a PG + O O O O o o O O O O o O O O O o # N N % •rl f % E * — I f I I I I 1 I I — I — I # 43 1 .-4# 0 1 0 0 1 O 1 0 O I O O 1 0 O 1 0 O 1 0 O I O O I W + .c q .--I f O O O O O O O O O o O O O o 0 0 H f ro% O CD (D O C) o p O O C) i# 0) H w# N + W I # O O O o O O O H % — O I # I I I I I I I k I I % "E+ I + I I I I I I I I I W i. li w % O O O C, (D cm) O O O f 4 1 % C) M O O v CD, v O v CD v O C' O v cm) + b1 .7. + N H II-I p •--I O .-I O .-i O .--I O H O O 4-3 % N-rl # N • N q % .T—. q l f — 1 _ I — I — 1 _ I — ! — I — I — I + O R f It E. .0 ❑ # O � (D 0 0 0 0 0 0 C) p o 0 0 0 0 % 43 # O O O O N Q N Q N O N O N o N O # 0-1 H+ ci O O O O O o 0 f ri O f H H H H H H r{ f w I z+ I I I I I I I I I + — — — — — — — — — — % •-1 I .Z % I I 1 I I I I I I % ro + C:) OD fA m m O rl + ()L.• d) + kn O In o •--I o H (3 H C) H rl A # Q. * m m - 00 m m CO m + -•i N O f N N % li q $4 % + U I w + I I I I I I I t I % 1 4 + I O I I O 1 m I m— 1 0 1 NI In 1 �D f N > 4./% C) ul O O to O N cm) C) C) m o r O M O o o f W (D p % O o O O O O o CD. O v H f 'a w % H H % rn W# C 11 % -- 1 U)f — I — 1 _ I — 1 — I _ I — I _ I — 1 o a + 1 + i I i i i I I i I •YI # >1_4 % 00 N O w O v O d' C:) o v b C C:) v u a + IUi W w « m m v m O m O m cm) m CD m o m O m IU H f N'O x % m O O O o O O O o > w + C si % \D r Ir r r r r r r O f w C) % N N N N N N N N N co m W + 1 N f 00 1 Q m I HI O—e-t I O N 1 C) N I O N I O N 1 0 N I W H U f •O > # O O o (D 0 o Cl O O Q O O Q o 0 M q FC + -4 to Q + H O O O O p o 1as 1 i a z * ID x w t _; o H o O O o 0 0 > W a 7 + UJ# H A U) R'. U % I % N I Ln 1 H I t4 1 O 1 N I O 1 w 1 r I I V4 W H % # M "1 m m O O H H H E+ a % •--1 U) % $-I ! I I i U) H X f 1 —% O I C) I o I (D I C) I O i O I o 1 fO 1 In W m # k O O O O O O O O O .'F'•. 4 % U1 % H H H H H •--4 H H H 10 E-4 pa Co U r1. 1 m+ ro W o H + # w A Q m f I.- f I I I I 1 I I I I i"A —+ —' — — — — — a v + I f 0 1 r I N I H I o I m 1 kD I v I v I ro W - O # % O H N N N H H H H ONr{' N + W > * m M m m m m m m m O H I # V d) # m m O O O O o O O LI 4 .YYYY.... % to_I + 10 %D r r r r r r r P. z = f 2t W % (V N N N N N N N N O % H U) Pq * -- I # 1 1 _ I 1 I I — I — I — I U) a % I + O I W I NI —M 1 M I N I ,-1 1 m I C I H i. y # O m C. m 01 O N V• m �-. % i-I + t() m In N O m r to V• + Q) H >< f a) w % LO N v v v M M M f4 + + f I # I I I I I I I I I + 1 f 0 1 ^Q 1 0 1 m I r I lD I ID I r 1 0 1 f W# C) N N N M N M N M ri M ON M kD (••1 N $ % V Q.# V• N v v M 1D m m M O M H m M M v CO) + m •? O f C, M M rn M M M N W •-i# M O tD W lD M �0 M �D M r M r M r M r U)# W tD U to W lD lD . 10 N N Z N N N N N N N I % I + O I (D (D 1 ,2. O 1 to In I In O 1 r r 1 0 W 1 v O 1 0 C) I b' + C % C) m m W w N O m O w W, qr O H N lD m % o Fi % In w H H W co In v In m In to to o H H + -1 N+ + a) .-I # d' .-i lD a l� l0 r l� m a1 01 a # +I % o 0 0 0 0 0 0 0 0 H + Ul w 41 % x x N •--1 O .4 N z z o 0o N o 0 w z z F F och - a a 0 a !• � a z0 z0 F W co Y1 14 W W not Cal o 0 o I r z m z 0 � a I .-t w En V) N J N •.7 0 4-1 H O H O ❑1 U m Q O Qy O w -1 � N PG WO V) rl r 14 N) WO W a• >+ r V1 N co V1 H W 3 N rl (� N z H rrz m �Da �• 0 • Z ct• O r-1 H N G H N oz -H H ') W $4 W rI N ❑ m m O 1-7 O z z0 zo aN I W o C9 W EU 02 > 0 H U) H a: E+ U H U) o3 7 S ❑ H I o a 1-a W N oC7 aQG [7 � F a a d a H H U E. w 0 O N W Q w I a N O E W E+ E. E. E. E+ H N " U •-1 U •-1 U r-1 U N U N W H H W W w W W W UA' x 1 W I O m to rn a DdA q ,Wj E. # Ho# EO# EO EEO EO a a10 am am am 032 2 3 o H d f] H W N W m w a• W v W d• Q a ao O d to O z m Z v z Ln Z 1O Z 1n 2$ w rl a N a H a H%D Hl0 HAD to H W F W a r-a ['>s� co fA N CV N N N O C4 rl rl ri •-I '-I U O0 U N C.J* O # O# O o O H O O 0Si El -7 Ni Z. -T 2 v� 2 r 2 t` 2(- W INul o k, m o 14 O ODO O rn O rn O rn .'[.' In 2 I a H H W W In H 1D rj D E -E E 0 W E 1OM F 1st EAO f- E _ U) do dN r mu dmadm a U) E+ HO HO HOz E100 E•10 W a V) a W U),-I U),--I U).--t 1� Cl).-1 a Cn 11 14 in a F O E £ a GQ 1W E f+ d WQ o � 30d d d wd aCd da wo xo xA .� o wo wa cnnm F. aV? FCC V) am El) U) 0-- D�\ W\ w\ 3:\ }1 11 O M 'AO I I I y p a Q a 5 b w Q z H co to rn d d d d d a H H H U) U) V) U) N W r1 cv m H 1--1 H H H za PC ?• c m O O O ,-I N m c 1n En 3 U E+ z z z w W W a E. z z z O O O O O d W 00. N N " " H 14 U C9 U 0 E. z 2 E. �.ez�,e� Q W N H H "G 2 x• X: Fa a Q A Q Q W W W W w w do Q Q d d d a a a a a .] U U U U W W W W W W W W H x x x m .-I * 4-1 o U* o o O Ln * 3a. a) W W r # rn f a w w In 4. 0 to « U + z a F f l a l a I I d li + % O C) O O O O a) + 0 V4 # O O o O O C)r; f N N+ •rl + + H f 1 f 1 I I I + 4.) 1 -1+ O I O O I O O I O I ro + C) • o O O o + y FI w f . N # 0 I f ao I + ro FI X x cV 61 + VA 0 1 f I I I I I f d' + 43 [u f O O O o + C I t + O M o [n o O f bl .7.f Ln .-i Ifl -4 In O O + •rl 16 C + O O 11 i Ol ri + v v G' W ❑ I k I I I I + O 4 + # H .t~ A # o of o ON o 0 + +) # 0 v 0 v o 0 f $ -H 6 # • f O m 0 f H rf CO f E. 3 + N + f ••-I i z f i i i 4, ro + 0 0 * -.U-I 4j 'a * .�-I O. ��-I �' N W + +I G a f •% -•i N O* M M M + U Q I W + I I I I I O I w I I w + H J o f C) O O C O O o 0 4. 0 N R.+ o - 0 0 0 c H # 7 w # H + I Vl + I o a u .4 # u w Q) H + a)•ly + O rl N �•-1 W + G N + r r r r O # w 0 # N N N N H m - Wm W + I G) + O 1 C -O I C 0 1 14 1 ❑ H A'. + 'A 10 � + coO tb M 40 O O .a •• W # 0 w # o 0 N # m# H N f I + I I I I U - I z w + 1 f N I C.N I N I r 1 u + I + I I I I a a) (n --- fn E+ + I + (D I 0 1 O 1 O I to z + # 10 Y•1 u7 a) W + + N F C] + 01 W + .4 0 ai W # U # .•-I �-I ri e-I U crr ui au f + W >O* I # [ I I I W - .4 Ri v + I + O I 00 1 -1 1 co I la H O x + co O V• 61 bl 9 M + a) p # '-I M M cv O H I + fl W + o O O rl $4 F4 # .-I # r r r r a z = + $ W # N N N N H E. m # I + 1 I 1 1 [q .4 + I + O I o7 I .-i I co 1 H # ,C # r In H w # aH + ic # + + I f 1 I I I # I # O I O I O I O I + a1 + .-I M to m M M * u 5 0* rr m o w a c to f a) a) 1-4 # M o v O In W 0 3 + D � In# w w w U w rN•I .N-4 ;? .N-i M + I U # I I I a4 I 010 -010 -01z OI H + C + v o v en r w r X + O 4 + m w v In a% of # a m + + V .-1 + [� W l0 01 lri ra lri 4] + ro W + 0 rl N M 0 M a x as \+ 0 0 0 4 o PRIVATE HYDRAULIC CALCULATIONS (NGVD 29) LINE "B" AND LATERALS OP210-NTECK HYDRAULIC DESIGN SUMMARYCC ENGINEERED SOLUTIONS FOR INLINE MODEL CDS2015 L—1 tus S, The following hydraulic summary supports the design of the CDS model proposed on the MISSION TRAIL APARTMENTS project located in LAKE ELSINORE, CA . The attached hydraulic calculations supporting the proposed CDS structure's design serve two purposes. 1. To ensure the proposed CDS model will achieve the design treatment capacity under the site-specific hydraulic conditions. The proposed CDS model CDS2015 unit is designed to process a treatment flow of 0.7-cfs. Under the site-specific conditions, the proposed 12-inch tall diversion weir will generate the operational energy necessary to achieve the 0.7-cfs design treatment flow rate. 2. To quantify the hydraulic losses introduced to the conveyance system under peak design conditions. A flow of 11-cfs represents the peak discharge generated by the contributing drainage area for a design storm having a 100 year return interval. Under these peak design conditions, all of the 11- cfs flow is assumed to be conveyed over the diversion weir. This conservative assumption predicts the worst-case resulting hydraulic condition and preserves the integrity of this calculation even if the structure is not properly maintained. Based on the information provided, the proposed CDS model CDS2015 is predicted to increase the upstream Hydraulic Gradeline (AHGL) by 0.47 ft for the above cited peak design flow. OHGL = HCDS = 0.47 ft The effective headloss coefficient across the proposed CDS model CDS2015 for the 100-year storm event may be estimated as a function of the velocity in the downstream pipe. where, KCos = CDS Headloss Coefficient: = HCDS/ udis2/2•g l = 0.78 If a software program is being used to develop the Hydraulic Gradeline (HGL) for the upstream conveyance system, the values listed above for HCDS and/or KCDS can be used as either a headloss factor to be multipled by the downstream velocity head, or input the headloss amount for the proposed CDS model at the corresponding node. Reference: Contech Engineered Solutions CDS Design -Ver A 1"'-)018 C=:: NTECK INLINE ENGINEERED SOLUTIONS HYDRAULIC CALCULATIONS ns MISSION TRAIL APARTMENTS LAKE ELSINORE, CA 579631-010 DESIGN PARAMETERS CDS Model No. = CDS2015 Design Treatment Flow= 0.7 cfs Peak Design Flow = 11.00 cfs Peak Design Return Interval = 100 year Rim Elevation @ US Structure 1266.00 ft DETAILED CALCULATIONS TREATMENT FLOW Tailwater Condition at Outfall, ELo ELo= 1,258.44 ft(invert plus depth of flow at D/S outlet) Exit Loss from DownStream Pipe, h, h,= k* [V2/(2*g) 1 where, k= 1.00 V= Q/AF 4.32 fps h, = 0.29 ft LUL, = tL.o+ nj = 1258.73 ft Head Loss Through Downstream Pipe, h2 Friction Losses, h, h2= SEGL* L where, L= 23.6 ft SEGL= [ (Q * n)/ (1.49 *AF* R213) ]2 where, Pipe Characteristics Dia. = 18 in SPIPE = 0.0200 ft/ft n = 0.013 Flow Characteristics dF = 0.22 ft AF = 0.16 sf Pw= 1.18 ft R = 0.14 ft Page 2 of 7 Head Loss Through Downstream Pipe, h2(cont.'d) 4/20/2018 SEcIL= 0.02008 ft/ft h2 = 0.4740 ft EGLZ = EGL, + h2 = 1259.20 ft Check Entrance Condition for Critical Depth Control ELcos inv. = 1258.69 ft d,= 0.32 ft EGLc = ELcos Inv. + do+ Vdc2/(2*g) = 1259.11 ft Identify Controling EGL Flow enters pipe at critical depth, EGLc controls. EGLZ= 1259.11 ft Re-entry Loss into DownStream Pipe, h3 h3= k* [V2/ (2*g) l where, k= 0.20 V= Q/A = 2.57 fps (area based on critical depth) h3= 0.02 ft EGL3 = EGL2 + h3 = 1259.13 ft Oil Baffle Loss, h4 h4= k*[V2/(2*g) where, k= 1.00 ABaiFle= 3.12 sf V= Q/Abaffle = 0.22 fps h4= 0.0008 ft LUL4= LUIL3+ n4 = 1259.13 ft Check Standard Weir Elevation HLcos= 0.33 ft ELw = EGL4+ HLcDs = 1259.46 ft H,N = ELw - ELCDs INV. 0.77 ft, or 9.25 in Std. Weir Height= 12.0 in Status OK Use Hw= 12 in, or 1.00 ft ELw= ELMS INV. + Hw = 1259.69 ft Page 3 of 7 PEAK CONVEYANCE FLOW 4/20/2018 Tailwater Condition at Outfall, ELo ELo= 1,262.02 ft(invert plus depth of flow at D/S outlet) Exit Loss from DownStream e Pi h v D 2OI) P , FL, 1a��.oa���N IIgD$e) E h,= k*[V2/(2*g) ] L la&4 .4 where, 'C slFtE RC pc L-f k= 1.00 V4'j oQAu+.� cAuS V= Q/AF fee- L = 6.23 fps h, = 0.60 ft EGL, = ELo+ h, = 1262.62 ft Head Loss Through Downstream Pipe, h2 Friction Losses, h, h2= SEGL* L where, L= / 23.6 ft SEGL= I (Q * n)/ (1.49 *AF* R213) ]2 where, Pipe Characteristics Dia. = 18 in SPIPE= 0.0200 ft/ft n = 0.013 Flow Characteristics do= 1.50 ft AF = 1.77 sf PW= 4.71 ft R= 0.37 ft SEGL= 0.0109 ft/ft h2= 0.26 ft EGL2'= EGL, + h2 = 1262.88 ft Check Entrance Condition for Critical Depth Control ELcos Inv. = 1258.69 ft d,= 1.26 ft EGLc = ELcos Inv. + do+ Vdc2/(2*9) = 1260.70 ft Identify Controling EGL Friction based EGL controls. EGL2= 1262.88 ft Page 4 of 7 Re-entry Loss into DownStream Pipe, h3 4/20/2018 h3= k* [Vz/ (2*g) l where, k= 0.20 V= Q/AF 6.23 fps (area based on flow depth) h3= 0.12 ft EG1_3= EGL2+ h3 1263.00 ft Oil Baffle Loss, ha h4= k*[V2/(2*g) ) where, k= 0.00 (Skirted-baffle model) Aserfle= 3.12 sf V=ZIT B 3.53 fps h4= 0.00 ft EG1_4= EGL3+ h4 = 1263.00 ft HGL4= EGL4- [Vp`/(2*g) ] 1262.40 ft Head over Diversion Weir, hs Elevation of Weir ELwe;r= 1259.69 ft(established above) Headloss for Free Discharge Condition h5a= [Q/(C* L) ]'s where, C = 3.1 L= 1.88 ft h58 = 1.53 ft EGL5.= ELw j,+ h5a = 1261.22 ft Headloss for Submerged Condition dsub= 2.71 ft(depth of submergence) h5b= 0.17 ft(separate submerged weir calc.) EGL5b= EGL4+ h5b = 1263.17 ft Identify EGL U/S of Weir The discharge condition is Submerged therefore EGL5 = 1263.17 ft Page 5 of 7 Expansion Loss from UIS Pipe, hs 4/20/2018 h6= k* [V2/(2*9) 1 where, k= 0.30 V= Q/AF 6.23 fps hs= 0.18 ft EGLs= EGL5+ hs = 1263.35 ft Head Loss Through Upstream Pipe, h7 Friction Losses, h, h7 = SEGL* L where, L = 8 ft SEGL= [ (Q * n)/(1.49*AF* R23) 12 where, Pipe Characteristics Dia. = 18 in SP,PE = 0.0200 ft/ft n = 0.013 Flow Characteristics do = 1.50 ft AF = 1.77 sf Pw= 4.71 ft R= 0.37 ft SEGL= 0.0109 ft/ft h7= 0.09 ft EGL7' = EGLs + h7 = 1263.44 ft Check Entrance_Condition for Critical Depth Control ELu/sinv. = 1258.85 ft d,= 1.26 ft EGLs = ELCos Inv. + dc+ Vdc2/(2*g) = 1260.86 ft Identify Controlinq EGL Friction based EGL controls. EGL7= 1263.44 ft HGL7 = EGL7- [V2/(2*g) l = 1262.83 ft Freeboard = 3.17 ft (at first upstream structure) Page 6 of 7 VI 9 O .0 -W -0 -0 � M 4 O J 'Do CV (V 6 c7 07 6 6 N� OI a I ON(O f0 (O (0 (O f0 f0 O N N N N N N N C Q d _ ~ 4LLI Q N V W Q M Y N O ~ a. CDN o °r O W a 3 J0000q; 0; O V t W N N N N CO) � N 1, N y-., o v O) I- N O N O O L 0 0 0 0 M Z - Rr 1,--6 u t- C O N Q OJ Z N Q W J Z a co W W W v r •, t n Q0 � a0 � r4 UJcnM v2Z v_ www W J J � > > � w ,. O � razz � ZLU Y � � � U N J m L LL oo � oo � � u ° Z W 8 N Z J Z Q /011 �D <." a W-i W o W � �G Gov ZW aND 4 W U ? fl Z e U V L N V LL �p Z W U 0 z W c� w E H z 0 a U Gu O E C7 v1 z a H D E. to ' . H z a � x � � U Ch tt H U E a a z o E BE�YY A E c$ x a w a w H i &a O O E O 0.S a z o0 o m W H co r•C v� z m a oG w N E m in U) H N in O O O z z z W w w z z z H H H a a a ve DQ w w x x x OJ N O H N N HW (7 ^ ui a � r E O C 0 N t O l� N 1 N d' N 41 Q �l V' C7 Y� z H E N M to FI-- oaN � Z O H N O E O H r .i Z N H SJ W N W rt la w HazG04 E+ M: HQ ua U H a t a H {d N a H W fa O I P4 a P3 N 3 W U E a (x m o •7 Q H H W r-CEE 3 5C W 0 0 0 0 0 H H O O O O C W H O O If!O W M N r-I ri lx W H x aE 0 w H> $ �i a H E. d O ai �••� H H H H OW Z H U a w 3 W za o m >+ m c• m c v O U E H A O E I wOZ. HN Mu'1�D 41 y D W W oG A UU UUUUU G x m x x x x 0 ,7y ??y-1 77yy CD 0 7y N o s{ O tf.0 c�0 O C., z E. E E E H F w x a 0 a0 a 0 7HC ao ao a o t7 a o C7 o U)o 00 a o [7 o a o a o 0 0 w o �� �9 �9 -0 � o 0o xo zo m m m r� RC � In # u� # o H 6• N @ N m x x x a a a ow w w w ow w ow w w m0 14 0 14 (o 0 O0 70 O 14 0 N ] O dUU0 0o 0m 00 .IO 0 O C7o vo 0 o Om too 2� o am 2� 0 W Cl cC FC w FC W m z z zz H fq O UJ V) UJ H U]O U) H EA O co cn O D0 a) O 'JO ❑O O "JO OO O 'JO p0 170 m m H O H O H O H O m M H O H O cnm H O H O H O O # I to �Qy ❑ O ❑ O ❑O 4, 1 m Q ❑ O# 1 '' µ❑' Q in O wa OGmw �ui IxO 04Nw �N w W O 4 WIn C WID Wko Cl) ah W c i y N 7 N > cli W C• ko z 11 z .--1 z Ti U) (Ij H H H U) 3 O O O 3 N O O O i N O O V' M d' d' • O O O 0 0 0 0 0 0 M M m ri m # a O O rn (e) t) M m m (n el z z o z o z o z o z o z CD, Z CD, z o Z o H El u) H N N N a 1 In 1 0 1 0 E E E+ a a a a 0 d k k # U ri i ri a I M I m I t4 E F F E "' w a a a W E H H H H F. H E F E E w7 U M U m U M U M Um U M U M U M U m U cn U M W W w W W W W w W w W W N u) M W co W W O m u) m 1 # f # # k k # # k k W F O E o E. o E.O E O F.o N o E.o H o H o H o 0 4=:M ai In Q'r lD Ix M SM.h a:O %D a:m a:to 4:h G'.[- H WON Wm W O WN Wo Wf4 WN WN Wm Wv Wv O Zm Zm Zm Zm Zo zo zH z i zr1 z i zri Ri H In Ham) HIn HW) Hk Hlo HW H�o Hm Hl0 Hko a N N N N N N N N N N N .--I .--I H .--I r-1 H N r-4 r-4 .--1 r-1 W U# O # O # O k O k O# O it O k O # o k O O d Z a 2 N 2 h 211 z 0 Zto h 2 M V. h Z N Z N N O m O N O O v H u) H D HN Hh Hm Ham• HN Ei %D Hm Frm Fm Hri xE+ 'i cn d -w d'r 4ko do dh dh dm dm dN d In a 40 H E.o E.o E•I o E•1 -1 E N E N E w E v E.In E In O EE In a w m ri m.H m.-1 U)li cn 14 m -4 En N ri ui.-4 u).4 � w 1 W .1 ❑ F. a w mod zd d d d Zd d zd d d xd H O H H H H O H H O E. E E H A Ei n � w � w a: 0 E A x O F w a: 0 1: o W w El U U U U U U U U U H cn cn zEO dU) 4U) dm zu) 4m z0 dcn dcn my y \ 7\ W\ W\ W\ P\ w\ p\ W\ W\ �+\ u) 5 h3 d D cc 04 0 7 5 a D h 5 m 0 P6 O u) L) d d d d d d d < d d d cn ca m cn cn m cn cn u) u) cn H H H H H H H H H H H ri N m @ In %D [- m m O .--1 ri ri O O O O O O O O O O O Z Z Z z z z Z z z z z E E E+ E E. E E F E. E+ E z z z z z z z z z z z w W W W W W W W w w w w w w W W W W w W W w a a a a a a a a a a a w w w w w w w w W w w � (L'* w w W w w w w w w r * V) a * a 12, a a a a a a a W N * O k h* r-i H H H -4 H ri H rd H -4 H 14 H H H -4 H r-i * z a E * - 1 a I P, - I a - l a - I a - I P. 1 0, - I a I a a i- # * O O O O O O O CD O O O P O O O O O O O # is P+ * O O O O O O O O O O O O O O O O O O H * I * I I I— I I 1 I I I m * J-1 I ri * 0 1 0 —0 1 o P I CD CD O CDI CD0 1 0 O I O 0 1 0 —O 1 0 •�� ❑ r-I * O O O 0 O O O O O O O O O O O O O O 11 * Id * O O C. O O O P O O O # Q) H W N * W 1 O * M O l k * I I I I N I I 1 I I # — — -• — — — — — — — I * \H I * I I I I I I I 1 I I * 31 PL * O O O O O O O O O * .0 1 is * O M O Cl) O M O M O M O M O M O M O M O ri O .--I O .-i O r-i O -4 O r-! O H O r-E O 11 w * -ri y c * o 0 0 0 0 0 0 0 0 A-f * N O * .Y'i A I �* ` I I 1 — E I — I — I — I — I * o a* * E. ,q A * o o M o O 1 o -Vo o rn o 0 0 0 0 * 1A * O O m 6 m O m O O 1D O O lD O 0-1 * H M 0 # W I Z #H I I I I i I I I 1* - - - - - - - - - - H * H 1 'I. * I I 1 1 1 t 1 ! 1 '.CD * U 9 a) � r- O 11 O .--I O -4 O H O m O m O 0 O 0 O # •r1 A-i •0 # N O m 00 OD m O fD 1D O lD W Cl) * 4.1 a a # ❑ * -.i dl O * rf U # U ❑ I w * I i I I I I I 1 I W # - - - - - - O * 1 ,C * I 1 O 1 0 1 m 1 I N 1 l 0 1 N lD # HCy L1* O rF O -W O O O N O O O m O O O O O co O U * ,w dl # O O d O O O l� O O O O O Z # r-I Q * ,tl 10 M C H• W * a W # v c O A P4 # I # E I 1 1 I I I I I •1 15 * '�.H * -W M O v M w r-i r4 N rl r- O iD O 01 N: -4 r-I fA W # t3l W 4. O o O O O O iD 1`-) 01 O O) N rI O N O k A # k w # d) H ,7. * W 'O '.>", * V• C C G' d' d• O O O ^✓ Gr .7 # C k * W iD lD iD lD l0 �D 1p tD O P Z104 r-1 a U # I * I 1 1 1 I I f I I V) co W 0 # f m # O I cw O 1 m P 1 m O t m 0 1 C• O 1 M O 1 [� M I lD M I w W .-A U # V y * � � r-I r-1 r-I .1 .1 ri r-1 H O O O O O 4a O O ❑ Cs r� # ri id Q * 0 0 0 00 0 0 0 0 a Q # D w * 0 0 0 0 0 0 0 o d w D > * v1 11 U P4 C4 # I # N 1 O I O I O 1 O I r-I t H 1 H 1 .-1 I I z w A'. * * N to O O u) OD co qT C E+ El * •1 rn '.� Z St * dl a * %D N N N N F 1 * > Cu # O $4 H o — — — -- — — — y # I # O I —O —[ �p I.v `O I— d —l O I O I O —I OI N d) * * O LO O O O N N O O 3 rtf 0 W * 0•(+a * H �• c C' M M N N U aH Z m V t !d EH ti H a m * t # I 1 I I I I I I I �., z W M # 1 * 0 1 ^O I C I M I N I LD I M I lD 1 —N I N O W O # # v 0) M r-I N O m k H z # k * tl• M p• O m 11 r-1 rt ri M N H * -Q1 P O v, a # Al w m c c cr c c in V in ak fd r-i # b W lD ID to lD �D 1D CO ' W * N N N N N N N N N O # I * I I I I I I ! I I # 1 —* — 0 1 O I d• I M I N I tD I —M 1 lD I —N I cli * 41 * O CF M N # 0 W * C' O O O # * # I * I I I I I I I I I `.{ # 1 * 0 1 ^O 1 O I �O I 01 O 1 0 1 01 0 1 C11 * * M O N ID m 0) O 1` O O lD co H lD O 3 * N P4* dti M 0) O O dw N O O v' ri O 1-1 M r4 O M O * k D O * C O O O lD O -V O O O * d1 a) .--i * m CDm O Q7 O Ol O O CDO O r-I O H O N O O # 'J ri V) * O O O O O lD CD w W O lD ID N N N N N N N N N ri — I U * I I I — I I I — I ! — I 0 1 0 0 l o O 1 0 O I D: O f 0 O I 7. 0 1 0 0 1 0 * C * cM H N U) r ri O) d EI w ri Ir E M C Ir O 01 * 0 r. * m w 1(7 N r M .A O1 ri Cn r O N M 0) M N ri * -r1 dI # * V rA * N H f H m O C f� N F lD N 01 E M W * i6 cr U -T N W M O W r- U r r-I m U 0) M (N N r] * f-) \# O Z O O H .--I N z N N -W z dv O W x a) a x r * uo 04 Cw7 N P.#k ZZ HA F I * * O v + a a * o � x * H * I * I x a) I H x O I CO * 'w: Q ri + O r * 10* O O # Q) H [max N * N I + 1 # IO 0 yC * o # m I # I I * E+ I * I v # 1) w # O * I x O * b1 Z x Ln : f f I.A I * I * O CL* * E C] * O # 4) # O * 3 a H * # o•11 + * w I z I E # — H f rl I Z f Z x m x -IV v « o of # a-) p, ;l x a) o * — O # 1 .0 + I �D # I-I 9 lJ * o o L7 x 4) d 11* o V' H W * W 0 * r1 E. m # U) W # m E * I N* I o a w * ,r i •rl 6 x rl * M 0 W * N u a * u • w * U) H z x N 13 :4 x LO z m a a `� 41 U' �4 W U It I * I H m H * —— ——— M OD D3 m f M I p ~ C-) r1 b 4 * o FA ai ao 0 5 x uwi z W FC # � * a• m 3 w I > � Iwa H O # Ul R x 1 * O 1 m FC ON a � * aw « "` se I E. x U * 0 U CD 1, ni wG HOD # # a E ao+ I * i T {. * `r f0 ri z Mx 1-4—InI O ? W O W O x it m u Fi z * * b, in 1, 0)w p * O m wl # +i a) # U; + r a � � 3 w + N � VJ w x I * 1 cli * 41 # r x N GEi x M 11, II 1 * * # I x I * m # a)x r 3 t Ili P O o + N N .-1 Q # H # N q * I U * I -ri +3 x C3 * N # O w+ d' f V ri+ * m * 10 W * 10 Cs] 1, LO w # # _ x o AN Z N Y 2 O m >+ F. O O m W z z E 04 •• 04 m w w O a >. a F4 zo '1 a a r1 E. m CID o W N a O i C7 0 ri r z o N F� I >+ C' N 0 CA ro HH O � >+ O Q o O W c W O �n a a cr W Ww !n N UI O 3 .$N U N z E. N M � H O � » � z O H N V E O H N •'I z to H f•) o r1 O C743 z a. o z p F Zo �N H a z u°4 EH-E o6 E aG Hq N U r7 U) U H M E W N 0C7a UU Ha • a a w w v2 w U) z 14 $ W N O E El 'rrva�71 WW W H W H W N w N U z I v) U N m U W E 1 r-1 O 1 a P4 w ❑ O W E+ 11 W E+O Eo EO EO b cC H CD i t a " S4 0) a V' a m a -4(AU) M m O w W EWi W W k0 DI W W OD W OD a 1+ O c� O z m z o z o z o W a4 a a H Lo H l0 H l0 H CD E W a ra H OD a N N N Cl) xw w rH w OHO W ` 0 0 o U P4 'i U k o o o O HI oo E - m zr zo zo zO W H Lo O G, a-I o w O cr O v O w O-W PG H H H In H 'i l0 tD O A 'J EN E� W E (fl t4 E_ � CA " - U) 4 O 4 N U 9 N W gc (,4 DG CA x4 E E O 1-0 z E O O E O W w v) �Hy QG W IA '-4 m-4 g m-4 � U)'I N E o E. >n W E] a O ❑ o rS rn F4 2 W W H o 3 0 9 4 W 9 x 4 a � E E. E. i.. w cEnm � N � In cEAm ° M 'ia 1 i 1 �D a\J O ai D OW z H N v1 (A K 14 Q d a H H H In IR N In z FA 'd N rl H H H H at O F m m a °z z° z W W w 't E 2 z z O O 0 0 .i W 0 H N .4 .4 a z z z z `� I, 0 (9 z z z z ❑ W H H H m". ❑ ❑ ❑ q W D3 W W4 4 O q ❑ C 1 w .] " L) U U U Di W W w W W w.y. w x x 5c r1 x 0. 4 x o 0 0 c k t•34 U k � # Y a + W M # O S-I ?I x .-I 1•-t .-I O a i k # o 0 0 0 v x a Q: x o 0 0 0 Fi x N N k E- # # x 1 k I I I k — x Y 1 .i + O I Of0 I O I w # .$ q .q i O O O O r1 k Itl 4. CD • O O O # al H N + N # W I + r M x m O 1 x x I 1 I N — I x '-E+ I x I I I C x 4� 4. x O CD, O it b, Z k If) ri to O W x 4. a dl• -ri c k O Y IdId * M q I + !?I I x I I l f O Q x # E 41 R k o OD O o i# Id x O M O O x 3 4, 1 x O •.-i Nx r W z_ I Z + I I 1 x x # o k Y i -•-I W O i # U R I W + I 1 I I-. O t lO x $J p Y k O r o o U x a) (U p x O o 0 q• 1 E x cn W x !n x 1 Vj # I I I — o a U)h W x O W u a i s4 tz x . > GH 41)c u x a w ID I z a Z + W U) .N-I 1-1 0 r .N-I •1 W I I 5 x x I I i••I co x + —— — — C!) w W + Q1 k 'n 1 0 to I O I W ri U U # 'O > # O .--1 O O R rt H x •--1 W H H AG 17 N .4 x .? M Cv + O 9 41 P r.0 # U)i H N I z W W x x w do .� E i H U) x U•a Z W k 7 ►1 N x I x I I I W 0) U) 1 x — O E O x I k O 1 01 O I to Z O x i (n 'a) 1` 4) W I•-1 x x 3 O x x to x m m r`'1 Eu G P4 H + a U a U (d a H a) 1 # I I I 16 H O x k O (N rn) Fi i $4 x b, H k 4) > + O E I x Y N # V• c c l0 l0 l0 L11 Z c x W # N N N Envy — U) a x i— —0 1 �r t —rn I H x r + .--1 m � x y) x r In w i wE x i x x I x I I I x I — —(D I —o I 0 1 x a-) n i �o w (o m k s� p o x v $ x a) () .--I x (A O O W O x 'J -4 V)+ In 19 U t0 1•i x I U # 1 I I I + I —# 0 1 0 O t z O I Y + C # r ('i O W O r x O x v 6) c i •-I W x f Y •--1 W # 14 W x O N N a N 44 x k orlo N Z O ri N M O O W Z z E+ mrs� a cC m W W o a c7 U) 0 0 a� a z Q E m_ m N .-I W N z O 1 M1 2 O M r� N }i I YI N J O L 7 H O ro o o n 0 > N FC '> W Ol OC w O n a • a 1~ W a w H rn N cn N N ko z I-I H �- cn M co a N a • z � O , .••1 H N H 0 H �+ oz .) 1••1 u, w -, sa w I N ❑ •' M O 8 O U z > O H pfi U) z4zaG E H F, L) r I ra cn o a U H H Im•I I o rl W N o C7 a l7 U H H a U 0 a E. ❑ W cn III f!) •Z, W as o w 37 1 a N O H U) ra 0-4 U r-4 U N U N $ PI U H z I W n y cntW/] O µ' EV-1 I W O ) Pd mQ a w H .-1 W * EO * EO Ea EO P+ U A'. H O 0 IZ .� P4 rn PG P^ RS r- P4 I-- cn IA �c O [Hv W H w >co- 5 .--. ? r-. 5 r. W 1- O RC O z O z N z N z N W 'A a w m Hw HW ►aw Hcb cli H El 14 PHG A W -1 'A-1 .N-I tx_7 £W o O U 9 QQ a U a o 0 0 0 H 0 0 r1 E 1- z m z c) z om a4 w H �n o N o La O O r O c- O r m Q z 1 04 W H H . cn W D O W M EN Ea W Eo S4 Ho In H o m 0 4 -0rigcvC4r4d• P4 cn E. HO HO HOO H o W PG U) H P4 W u)'A cn -4 tl) 'A ",� m'A [L Q 0 Q £ ap9 FC D z W W H O '.{ 3 0 rs a E- aaA a ❑ W ❑ H U .] E+ Ow z 1-1 co cn cn W H H H u) u) cn cn w N N cn N N N N zw O F Vv M Z Z Z N M d• N 3 w w w E z z z O O O O N U O ri N H H H 'z. rI-. 2 V4 I w z a a a ip C7 U U to 2 E. V, z .. w 0 0 0 0 w w w w w cc o ❑ ❑ 4 .t 4 a a a a H U O U U W W w W W W W w * a c * o 0 0 N + 4 -1 U * W ¢.# P U * Z W E * I W 1 1 FC W — n. I # * 0 0 0 0 v * a a * o 0 0 0 rl # * F + I * { I 1 * }) 1 rl # O I O O I O 1 I-i # lo+ o 0 0 O * N H W+ N * m I * r I # m 0 + M + m I * I 1 I I * \F 1 —* I I 1 V• # 4J [y * O O O # .0 I # O M cm) O * a • z * In .-t to o iJ ro * x ❑ I * I I 1 * 0 * I 1 + O Q* * F.( q# o rn o 0 * J-) * O N O O # as � + * o-,1 s, # r w I Z i*. I I I z # I I I # ro # o O Ir OD N * 4) R. 'a* + •r[ Ol O* * U q I k I I I ko I, N > J-1 * O O o O O U' # N W P# O O O 2. *H :J .--I ❑ * c c * u W H + N w rn # I (n * I I I -H # .-i -k v) w + o+E4 + m O rn rn sA a * u • N * N H # 41 q✓l 5* C d' 4 O * [ U) * N N N H OD H I H I —H I o m [] * 1 4 * .-4 1 N .4 1 O I q ~ A H * -4 ro FC * O 00 O O wa # fn# H u) * 1 * I I I U � 0' 0 I # r-I I .--1 I 07 f I 'I+ W = * * dl 61 O E+ # .-1 (n # 3 x > W i > h * I * I I I W N t!) I # fn E O # I # —O I —O I —O I u) z o + * cD ID 3 ss * u) * 1 1 r I Y a F f °'cwi ro a 'J 1 # # H co a lL M # ro W O + * N N d N # U) > lT Ol 6� O H I * 4-1 o + a d• v $4 PO # ro '-I * ID lD cD N z = # ,'3 W # N N N � Ef�Ai 1 H t H I H I U) 4 * ——— — -- — cn a + I o c rn I I ON lf7 r * 0 E + * N [r4 # tl• N N # # # I # I I I # I i. O I O I —O I * 01 * M O r r * 4.J a* W In # w .7 O # M ,�5 * N O) r-I * O O N W N N # > .--1 (n * . to U to 0 W .[ � .N-1 ,N-I 2 .N-I N # I U i• 1 I I I * I * —O I o o I z o 1 41 # C # r (N 0 W O� * O e* v M r r # -4 O)+ # -) r1# cV w # ro W # O M 1p a H # In a # * # C V 4� 1-'''�NTECH� HYDRAULIC DESIGN SUMMARY IUCm1Ds ENGINEERED SOLUTIONS FOR INLINE MODEL CDS2015 The following hydraulic summary supports the design of the CDS model proposed on the MISSION TRAIL APARTMENTS project located in LAKE ELSINORE, CA . The attached hydraulic calculations supporting the proposed CDS structure's design serve two purposes. 1. To ensure the proposed CDS model will achieve the design treatment capacity under the site-specific hydraulic conditions. The proposed CDS model CDS2015 unit is designed to process a treatment flow of 0.7-cfs. Under the site-specific conditions, the proposed 12-inch tall diversion weir will generate the operational energy necessary to achieve the 0.7-cfs design treatment flow rate. 2. To quantify the hydraulic losses introduced to the conveyance system under peak design conditions. A flow of 4.3-cfs represents the peak discharge generated by the contributing drainage area for a design storm having a 100 year return interval. Under these peak design conditions, all of the 4.3- cfs flow is assumed to be conveyed over the diversion weir. This conservative assumption predicts the worst-case resulting hydraulic condition and preserves the integrity of this calculation even if the structure is not properly maintained. Based on the information provided, the proposed CDS model CDS2015 is predicted to increase the upstream Hydraulic Gradeline (OHGL) by 0.16 ft for the above cited peak design flow. OHGL = HCDS = 0.16 ft The effective headloss coefficient across the proposed CDS model CDS2015 for the 100-year storm event may be estimated as a function of the velocity in the downstream pipe. where, KCDS = CDS Headloss Coefficient: HCDS/ I Vd/sz /2-g l = 1.74 If a software program is being used to develop the Hydraulic Gradeline (HGL) for the upstream conveyance system, the values listed above for HCDS and/or KCDS can be used as either a headloss factor to be multipled by the downstream velocity head, or input the headloss amount for the proposed CDS model at the corresponding node. Reference: Contech Engineered Solutions CDS Design -Ver n'"")018 O NTECH" INLINE tag, ENGINEERED SOLUTIONS HYDRAULIC CALCULATIONS cAS MISSION TRAIL APARTMENTS LAKE ELSINORE, CA 579631-020 DESIGN PARAMETERS CDS Model No. = CDS2015 Design Treatment Flow= 0.7 cfs Peak Design Flow = 4.30 cfs Peak Design Return Interval = 100 year Rim Elevation @ US Structure 1269.43 ft DETAILED CALCULATIONS TREATMENT FLOW Tailwater Condition at Outfall, ELo ELo= 1,261.27 ft(invert plus depth of flow at D/S outlet) SEt P A 64* '1 OF 7 �oR ��Rw- F-Low Exit Loss from DownStream Pipe, h, hj= k*(V2/(2*g) ] where, k= 1.00 V= Q/AF 4.88 fps h, = 0.37 ft LUL.I = tL.o t nj = 1261.64 ft Head Loss Through Downstream Pipe, h2 Friction Losses, h, h2 = SEGL* L where, L= 36.19 ft SEGL— I (Q * n)/(1.49*AF* R2/3)12 where, Pipe Characteristics Dia. = 18 in SPIPE = 0.0284 ft/ft n = 0.013 Flow Characteristics dF = 0.20 ft AF = 0.14 sf Pw= 1.13 ft R = 0.13 ft Page 2 of 7 Head Loss Through Downstream Pipe, h2(cont.'d) 4/20/2018 SELL= 0.02854 ft/ft h2= 1.0329 ft EGL2' = EGL, + h2 = 1262.67 ft Check Entrance Condition for Critical Depth Control ELcos Inv. = 1262.09 ft d,= 0.32 ft EGLc = ELcos inv. + do+ Vdo2/(2*g) = 1262.51 ft Identify Controling EGL Flow enters pipe at critical depth, EGLc controls. EGL2= 1262.51 ft Re-entry Loss into DownStream Pipe, h3 h3= k* [V2/(2*g) l where, k= 0.20 V= Q/A 2.57 fps(area based on critical depth) h3= 0.02 ft EGL3 = EGL2+ h3 = 1262.53 ft Oil Baffle Loss, h4 h4= k*[V2/(2*g) l where, k= 1.00 ABafFle= 3.12 sf V= Q/Abaffle = 0.22 fps h4= 0.0008 ft LOL4= r-UL3* n4 1262.53 ft Check Standard Weir Elevation HLcps= 0.33 ft ELw = EGL4+ HLcos = 1262.86 ft Hw'= ELw- ELcos INV. 0.77 ft, or 9.25 in Std. Weir Height= 12.0 in Status OK Use Hw= 12 in, or 1.00 ft ELw= ELcos INV. + Hw = 1263.09 ft Page 3 of 7 PEAK CONVEYANCE FLOW 4/20/2018 Tailwater Condition at Outfall, ELo ELo= 1,264.31 ft(invert plus depth of flow at D/S outlet) Exit Loss from DownStream Pipe, h, �L�- (26y 31 (NGvvaR)' aG�•7G LN A.ViJ84,) hi= k*IV2/(2*g) � where, sIFE f2 CFc V w V'3 k= 1.00 A' Ky 13 Au uc cALc V= Q/AF 2.43 fps h, = 0.09 ft EGL, = ELa+ h, = 1264.40 ft Head Loss Through Downstream Pipe, h2 Friction Losses, h, h2= SEGL* L where, L= 36.19 ft SEGL= I (Q * n)/(1.49*AF* R2/3) ]2 where, Pipe Characteristics Dia. = 18 in SPIPE = 0.0284 ft/ft n = 0.013 Flow Characteristics do = 1.50 ft AF= 1.77 sf Pw= 4.71 ft R = 0.37 ft SEGL= 0.0017 ft/ft 112= 0.06 ft EGLZ= EGLI + h2 = 1264.46 ft Check Entrance Condition for Critical Depth Control ELcos Inv. = 1262.09 ft dc= 0.79 ft EGLc = ELcos Inv. + do+ Vdc2/ (2*g) = 1263.20 ft Identify Controling EGL Friction based EGL controls. EGL2= 1264.46 ft Page 4 of 7 Re-entry Loss into DownStrearn Pipe, h3 4/20/2018 h3= k*[V2/(2*9) 1 where, k= 0.20 V= Q /AF 2.43 fps (area based on flow depth) h3= 0.02 ft EGL3= EGL2+ h3 = 1264.48 ft Oil Baffle Loss, h4 h4= k*[V2/(2*g) ] where, k= 0.00 (Skirted-baffle model) ABatne = 3.12 sf V=)Q-1 B 1.38 fps h4= 0.00 ft EGL4 = EGL3+ h4 = 1264.48 ft HGL4= EGL4- [VQ`/ (2*g) ] = 1264.39 ft Head over Diversion Weir, h5 Elevation of Weir ELweir= 1263.09 ft(established above) Headloss for Free Discharge Condition hsa = [ Q/(C * L) ]1s where, C = 3.1 L= 1.88 ft hsa = 0.82 ft EGLSa= ELweir+ hsa = 1263.91 ft Headloss for Submerged Condition dsub= 1.30 ft(depth of submergence) h5b = 0.11 ft(separate submerged weir calc.) EGL5b= EGL4 + hsb = 1264.60 ft Identify EGL U/S of Weir The discharge condition is Submerged , therefore EGL5= 1264.60 ft Page 5 of 7 Expansion Loss from U/S Pipe, h6 4/20/2018 h6= k*[V2/ (2*g) l where, k= 0.30 V= Q/AF = 2.43 fps h6= 0.03 ft EGL6= EGL5+ h6 = 1264.62 ft Head Loss Through Upstream Pipe, h7 Friction Losses, h7 h7 = SEGL* L where, L= 8 ft SEGL= [ (Q *n)/(1.49*AF* R2r3) ]2 where, Pipe Characteristics Dia. = 18 in SPIPE= 0.0284 ft/ft n = 0.013 Flow Characteristics dn = 1.50 ft AF= 1.77 sf Pw= 4.71 ft R= 0.37 ft SEGL= 0.0017 ft/ft h7 = 0.01 ft EGL7' = EGL6 + h7 = 1264.64 ft Check Entrance Condition for Critical De th Control ELws Inv.= 1262.32 ft d,= 0.79 ft EGLE = ELcos Inv. + d.+ Vdo2/(2*g) = 1263.43 ft Identify Controling EGL Friction based EGL controls. EGL7= 1264.64 ft HGL7 = EGL7- [V2/(2*g) ] = 1264.54 ft Freeboard = 4.89 ft (at first upstream structure) Page 6 of 7 3 O t0 OD 00 O N a} N O V V 10 f0 y ((eepp}} � � fssfpp�� teetpp�� M N C J N 8 N N N N N N 10 p CD � � W 4f LL N Y N U. 2 = LL 4 ri o 0 0 0 0 0 0 N f0 iA N a W 3 J N f0 CN C4 C14 N N N N toQ' 0/ n 0 � n M N O M O O O � r LL z c 0 0 ,D 01 N N M n T W J z � � LU Q r r `° � �� w w -> ww a a��• � a o n C a W U azr o z � WWW + J M U W W i• 02 t j a z z 2 \ La 'y m 0 co t U 0-0 IL cu0 � 00 _ 66 J 8 z ✓ z z � w Wo LL 0 U F � � v Z� IL � LLLL � : W 1- 2 > C \1��I z �y ��11\� I z LL 7 W v m U CDS HYDRAULIC CALCULATIONS AND SPECIFICATIONS CDS2015-4-C DESIGN NOTES CDS20154-C RATED TREATMENT CAPACITY IS 0.7 CFS[19.8 Us],OR PER LOCAL REGULATIONS. MAXIMUM HYDRAULIC INTERNAL BYPASS CAPACITY IS CENTER OF CDS STRUCTURE,SCREEN AND 10.0 CFS[283 Us]. IF THE SITE CONDITIONS EXCEED 10.0[283 Us]CFS,AN UPSTREAM BYPASS STRUCTURE IS REQUIRED. FIBERGLASS SEPARATION SUMP OPENING THE STANDARD CDS2015.4-C CONFIGURATION IS SHOWN, ALTERNATE CONFIGURATIONS ARE AVAILABLE AND ARE LISTED BELOW. SOME CYLINDER AND INLET P CONFIGURATIONS MAY BE COMBINED TO SUIT SITE REQUIREMENTS. CONFIGURATION DESCRIPTION A s Y GRATED INLET ONLY(NO INLET PIPE) + GRATED INLET WITH INLET PIPE OR PIPES FLOW r y CURB INLET ONLY(NO INLET PIPE) y CURB INLET WITH INLET PIPE OR PIPES r i 1 SEPARATE OIL BAFFLE(SINGLE INLET PIPE REQUIRED FOR THIS CONFIGURATION) i SEDIMENT WEIR FOR NJDEP!NJCAT CONFORMING UNITS TOP SLAB ACCESS IY a (SEE FRAME AND COVER DETAIL) ° . ° PVC HYDRAULIC SHEAR 48"[1219]I.D.MANHOLE PLATE STRUCTURE +/-65° MAX. SITE SPECIFIC PLAN VIEW B-B DATA REQUIREMENTS n Water atarra N.T.S. h• 0 o STRUCTUREID WATER QUALITY FLOW RATE(CFS OR Us) ` PEAK FLOW RATE(CFS OR Us) ' CONTRACTOR TO GROUT o CONTECH' o RETURN PERIOD OF PEAK FLOW(YRS) ` TO FINISHED GRADE .,.,,,.�e•r.=nes<am SCREEN APERTURE(2400 OR 4700) GRADE \�/ �/ RINGS/RISERS i /\/� MET PIPE 1 PIPE DATA:L I.E. MATERIAL DIAMETER e �,HTFIA ICE CA LL'8o�3 INLET PIPE 2 FIBERGLASS SEPARATION ° OUTLET PIPE • ' 2 CYLINDER AND INLET _ cli uai k RIM ELEVATION III LU ANTI-FLOTATION BALLAST WIDTH HEIGHT FRAME AND COVER ' B INLET PIPE III rn B (DIAMETER VARIES) NOTES/SPECIAL REQUIREMENTS: 0 (MULTIPLE INLET PIPES III OUTLET PIPE N.T.S. o MAY BE ACCOMMODATED) ' o PER ENGINEER OF RECORD r0 i U -- ° (� c _o I 9 " PERMANENT POOL GENERAL NOTES 41 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE. ELEV. 2. DIMENSIONS MARKED WITH()ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY. w ° N 3. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS,PLEASE CONTACT YOUR CONTECH ENGINEERED j OIL BAFFLE SKIRT o r-- SOLUTIONS LLC REPRESENTATIVE. www.ContechES.com z 4. CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATAAND INFORMATION CONTAINED IN THIS DRAWING. 5. STRUCTURE SHALL MEET AASHTO H820 AND CASTINGS SHALL MEET HS20(AASHTO M 306)LOAD RATING,ASSUMING GROUNDWATER ELEVATION ? 1'-9" 533] o AT,OR BELOW,THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. SEPARATION I u 6. PVC HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYLINDER. REMOVE AND REPLACE AS NECESSARY DURING d SCREEN o MAINTENANCE CLEANING. s o PVC HYDRAULIC INSTALLATION NOTES Q SHEAR PLATE • °a A. ANY SUB-BASE,BACKFILL DEPTH,AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE < ` ! SPECIFIED BY ENGINEER OF RECORD. B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS MANHOLE STRUCTURE U (LIFTING CLUTCHES PROVIDED). C. CONTRACTOR TO ADD JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS,AND ASSEMBLE STRUCTURE. a SOLIDS STORAGE SUMP D. CONTRACTOR TO PROVIDE,INSTALL,AND GROUT PIPES. MATCH PIPE INVERTS WITH ELEVATIONS SHOWN. ELEVATION A-A E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT,HOLDING WAFER TO FLOWLINE INVERT MINIMUM. IF IS SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED. o N.T.S. Ci NTECH® CDS20154-C {I]� ENGINEERED SOLUTIONS LLC INLINE CDS c � www.ContechES.com 9025 Centre Pointe Dr.,Suite 400, West Chester,OH 45069 STANDARD DETAIL w — 800-338-1122 513-645-7000 513-645-7993 FAX CITY OF WILDOMAR MASTER DRAINAGE PLAN S-I (FOR REFERENCE ONLY) M �,L1/i�•,�J�W.� \I\ �� � j � � ,� � - �,�' `fir"v`�°\ �� /..\�l!"`� "MWI t' MIT >1 ►bla( A / ® �� �� ZINO ter, � .� ���.___ ,f� �4, � �✓, �,,�, �� ,. a��'�,� ,,� fill / r• I�.'� - 1fl\ / �j/ L� IS � —OLIUM SRIJ� C 1 Ip� � �) ~� p�L , NA '�,_�-�� � � ,�.� � �=����� ���� ✓.� ,� , �- \u ��sl 'fir � � ,r� � � i -�G S,g IN ff pISO , �_,--..�„+1 .�,1�l� ��(v'�� �. r J ✓�-'� .1 . . W: r.• � '.'�'� .aa1a�.J`r�,� A� -. �' `�� r i�� --� �� �.. �-► r+-. �"L`�, � L. f/ _. �,��'-� f�li, .`� �--.� :b l � f� , � . � (a_ � 1. ��- r � QWE-i ) �lvr .ri �r l �IPA',,� � , , �.MEq ®— 1\ V.. Iti� te ' / ;✓� � . •��hau �..'. y„;\ , II� © ._.. �'" `� '�1 .L it-:'! \i1 + 1\ ^14 —��� \r�..1 r•aA1�, r �� S+T/�aefcTi7 ' -J 'L-._ ROOM %:.ri' sS� V � \ /, � � ,r� •�K•.���.�.1�•i.=R.,���"�`�.i/ST17tl�� ��f.' �! �11��,,J ��._ �'�• ✓ -%,w.►,�.�r �•� ��r/�l ��� �I ��..�!'ll�`y =q°� c©'s. -+� -.Y�.A�+►. �. //7w�*. .�,� �� ��:C� \ • •'L r v w -��•�-- 1• !©90 ti r �� ,� `��♦ti►a>yr1� �D' i�,F.I' �► 1 �� )7'Il ��n1n ;�P.����� •� -ice ��--� � iT�'��� �`.L-• ��� ..� to m �'�+�V• �� 1�..� '��I:�::o1 Y��.; ��. � ��i•A'�, of� � �� � � � - __ !�- -.�✓�1 � J��J��n�\\�A�/ltl���� �^�. _ y�14" •�.�i�-own—, �. ,1"4:.' a i I��- -:a/i'",�r' i r/�q 1=���%011--aiwi�4� S c I���- � - —�©."�. __ A, tit 1,� .. ,: l �1{ �.,i �• - 'mra►.. i�V"..r ©C1 yu/�11 �1f7IRST — — - '- O� ♦ `� ! ICit /,t\ y.,1 tia, 1� ��� Dti `'� �%�n)�r T1�� ��-�'s 6���.. il'�' � ������ Iw ��%I�♦��� �• » (�,_�� � ��-/ �� t l`�'4..,. I �L.,oi7.��'ij<' ..,�r• ,, \)/�' `:1"�.: � �'w�.; -i�,♦ s ♦ � ♦ «'� ��i ,�� ►�1 © /�� 4cY� r/ 0 - ©L/ l (! Db���y% l�r■. � a r1f�'+� ;% 'i `` R►a � Q.. .,< ��' 1� Z�✓��u ��'�../� e.. F �, r o y l� i/- Alit. ' ttaid� �' �, � �� �dL� 5 t: � y � ,�/ \r �,li_.�...--r.� 6:� /,i� �\\` //1�r� , lj ~'� �I''"'per` //•'� i�� / (� ���;� �� ) ' ��' > vi' •• ��♦'►'�a� �7�� ✓��1 �7q - ���/��j��J�I ��I' r �� /iV�ll'.AA� ` �R �(�M�J~\ �Irs.t`4.. �� iT ..� �Y TG' \v,: f.• s 1,�� y.�� � / o$. ' � ���a°�`0� ��• / � / � � i � � j 7•°- J "i�:� 1. fir, � �11�1��1�� � / � .� ��l•U .:� �I' 4.. I �.��'s°,�/ \�'�►I ��ST�'�� ! / -t� �� .moo:di , r , 9 PAZ r•"V * f 9 • / I,p. _ arc 0� a� I � �..� 4 l RF M• es•�� ��W -mm -!M�Vq LOCATION MAPIL � �►" ILIA! ^.r . o ' � � ®� 'y �►, ��� , - � wad • �' J »�.\^_� M-Wl Ire MOLE ���•`•� CL�ON KEhTH RU > \ ;` ���� ' ! / � Rf� i���Ltt �� }� II► rcr. 17, � � �,� ��` �S� ;♦���rt ., ''�". ' . �.� �� mow,'� �� ' � mi pm wos \ . . . PM.� ME it a-Mal ,��' MISSION TRAIL STREET IMPROVEMENT PLANS (FOR REFERENCE ONLY) -126s gq -1280 g -1285 1275- g L=asof o-c. 8 g Lu A/4 A �SQ+/i A/4 �,414 4/4 1270- $� Za FK a N New 3 x -1280 $E 8 $^ x PROP05a wlY TOP OF CURB 1275- N $; g g N 8, $- -12W c N 1 62+81 10 IN!-MI$$Ia!TRAa J4+97.IT 00.f4^OOEN TRAIL - - C.500x 1280 ILW •Ll\r _ 8� +N i 8 * - ExsnNc cR[JAO suRFAc1 AT sAwcT r 1275- 8 �o gR � nN O.0 O.C. a .a wu yyiiKI. '- bV PROFLE MISSION TRAIL � W N w e N to HORIZ. 1" = 40' o VERT. 1" = 4' cB Is 57 58 59 60 61 1;v2 63 64 65 66 67 63+6Asr 13 Awusr SANAl SLTTER MONOLE TO FMBSN SURFACE. 1 DO15.flf1CT DW A-8 C111�B AND WrU PLR RNFBSEIE coal sm.NO 201. UY.'86•� A30' ._ __ ^'c"5 `' S `�" 3o-�-COp61M1L'T TYPE•D•UA4B fit IdME%'OF CDINAY 9If1 NO 2W. f5 ARx15T FXI,T Il fM r0 IFAOE W L 90M PEN CA INKS-M.AS fO ON PLAN 18 Ill EOST umm PER OR1NY MAN �g Sa-mNS7 1 6•AC.OIiR r4'Af1 PER GEOTFCHNMA[L7£IXNEER5 REC018ff1£f11TgNS f9 REMOVE L7ifSTNTC AC./A8.PAVEHQIr. k'C F C PC!y C'4' J SO RItRLpPLASRC 17 SOX w147E»PEN CILTRAN5 Sm.PIMF PLAN MD.A240 6 al DEPRESSION�ll fin•SM.NO 311,IAT•C. N F _ .�_ OfIi1LOPIA51x:TYPE N.VrFX 1$MW SSA PAWS PLW NO 42M 22 CONSTRUCT SfAFIT f1CFLT PER RfYE1PSEE WIARY Sm.1000{9,500[UffTES)5711ELT LfGTIT 3 INSTALL STRLLT NAVE SUCH MR ON OF LYE aSagRE SEA NO.201 7&CONSDN1Cf CROSS CAURunLER PER RNFRSfOE C"?Y STD.NO.209 L0l'A110N PER ARAE ON SHEET J. R"vI" ti� �'��:gj�"Y.' 1,7 iz '+�'� 8�Ct1167R111'7 SYIEYaIlX�..vTN.PER Purl PLR RM1fR51flE mllNlY Sm NO 400 o-RROGTE LT(LSRN10 B05 STOP BENCfI AMD SIGN. P.I. + t6.r.+" I.` - - - - - - - - a 00157ROCt ACCESS RAMP PER RNrR9TY COl STD.NO 403 ®-CONSTRUCT CONL'ROF WILIRO �m==��V u a,L=a,M ELBERTA ROAD 0-- O- k !1 SOY COT PaaBNr PLR fkTAE AM SNe7T 3. 7o cauTmAv LxaR aAss RM RAP PTR OE'TAE ON s+[Fr 3 3' T2' LOCAL DEPRESSION*15 � CONSTRUCT AC OVER A9 I I � � $ SvQ,� '" + '; '�. •� �W I � .. � -IG!!!!!f1 RE1fOVF AC PAVDIENT AND BISf �. R a ky ffi a a HIDDEN TRA < a 9 a" �� •� S SEF SHEE7 N0.13 1�" U - - - - BdA• D. 70 ....._� .� B r, �� 6 _ - - - 8.- ��N0.34 .�.c--z �SHEET f�md A ��SIMIl .T15 _ �" _ _ � _ Oil m r , x 1' • ar�l. Z a _. ..-. ... RSIDE ImAI t-.:_T-o-.-------_---._--_--_---._.-.-..'-_--•'_---_-✓--_---'---!--__ -r-_wf/1�1-.f -Sl!a - - -- --® -- - -- -Y A STA tAT(�3Y5 y7 •'E �FJOT ST FP JOIN,• --_- R/W P - MAWtR o,f n.nE- _ -- . '� - -aI 1 PA4EMgff IX " _---_-- V/FEAM PARLAr----------'-- - --- ---- 9 S DETAIL °A" N 1277.48 R. 127 tC 11dTC TW I�8a�n �f TT Q a It C8 38 j 3f-34 \y r2m".16 z 66+8507 I 10+620 LAT. .50 CYIRVF T"Af - MISSION TRAIL D '` s ; N �f2;9,� 17 meT R 06 aw Cl ILNGTN RAMS O•J.TA TAVCENT 5 { 14 121a61 BM T .7fi tC f 79.01 TC 7 eW_ Y G$Ap}{)C $CllaJ s l7 55.04 35.00 90'RS'SrY 35.05 c J9' k'4-' [7 54921 35.A7 8Y54'02' 34.94 _ 4O� 5..- g a o o q y f3 .19.63 •24.00 36' 26.01 i / 1279.T8.0 I 11A.J!T 40' 20' 40' BD' 160' w LL,I' LX157 FP EX PYk2 55.80 35.00 91-2I'll 35.8E � 1278.90 EAY t tir.�U,N� $!.,�Rti'wb LYN� (Lz7E.9O 1279.8o Tc Q - ,n 3, •CIA's RERM RAGRi6 LESS THIN 35 FT.MAV4RN OLE TO A4ATCARLNE SrA 11+25 I 1279 -Ow ( TAT) fXts-TOAG POWER POLE STY ABOVE UTt I 1 Lncb 40 IL LOCAL �8 REVISIONS: PREPARED UNDER SUPERVISION OF: ' OTY YE557 MS 4123 fP �fi016fi `o PREPARm BY. ■j CQRPDRAT/AM 3 PETERS CANYON,SUITE 06 5 TFEET� yTOTE551 _e I��IM7S GURP J AWLIFN IRNNE, CA 92606 'N LAM}LfRO-FRN T NO 3192C1-Y p{�7 a r4 'e, S.T.M.yLL50N DATE yV T. 949-679-0090 n COUNTY OF RIVERSIDE 9 TICE NO.49854 TIP. 9-30-08 t'T M TRAIL_ OF y` w•.ow THESE PLANS HAVE EIM REVIEW)FOR OOMPUNTCE VAM THE BENCHMARK: 6cC+slox DEPARTME OF PORTATION SCALL AS NOTED * c * CeC�s�'±-r� �,/,, c.�.ai[x✓�_ * APPROPRIATE OONDITIONS OF DEVaCPNENT AND/OR 07Y AND RIMYSIDE BENCmMARK N0.BM E-3-70.EL££.1279629. OR SS F=Rom 3TA. 57+96.07 TO STA 69+00 47 s sq� PROVED BY: DATE 0 0 Q�(]a e d d 'T� ?� 7EIE STATE IAWS,_ANO PEREaT CAN BE ISSLCD. MSC N CONIMETE POST 72'NORTH OF'Y NIERSECIION OF $.�Tg __ oai x Ot\ PATE: CORYDCN STREET AND MISSION TRAIL 27'EAS1 OF THE OEN7ERUNE rva 1( RECOMMENDED BY: DATE:o f S11 caI W M°A'° �'�11°O OE57(YIFD BY: MKW DRAWN BY: EDS,RP Cl 4 OF MIS"TRAIL W.0- FOfi: F.8. FLEE N0. CHECKED BY YTY PROJECT MAN AML SM'M.Y6L60N KEN A.SETMALO R6E 16915 EIP.6-30-08 CITY ENI71O772 150,V.C. W V.C. Iff V.C. fff V.C. Aj.."+00.001,fl:f263.07 P1.0+00xv.,0.:283.07 fool VC. Pl.:21+50.00;D-,1282.95 Rf.72+50.W D.:1282.45 100'V.C. GI;1*14 ox, PI:70+25.00 EL: 1281.65 GI::.O4OX;G2.,-0500% j R 01;-0.507X 4t-f.3201 'to K 1 of -1.040% CZ 1.04OX zt q qZ g � t �t kl l I 12 PJ: ; +: X 1278.B2 / 9 m 9nl 9� & gR a I 1/1411/4 A14 a 4 a a ,- 9 : I.320% Z . -;Oa W � a" z ', NNOO- I 1280- 1280 "ly TOP OF CURB a- . R t a- 9 *P! 8 A 9 oww QROM MISSION TI AIL i PROFILE HORIZ. 1" = 40' VERT. I" = 4' 67 68 89 70 71 72 73 74 75 76 77 MALAGA ROAD (t ce 139 Sff SHIM NO. 16 70+11.17 LAT W,\\)g77f=-q50- 7 ( Ie I u \y El ry I 22 t", 0 S2 o.1 IQ 6- 22- 6. SO. LOCAL SEE EA C, z Tn /0 w z ------ Fy LWEND -i CONSTRUCT AC OVER AS g1;8g 77 Ury IL '--JON fx PAVbCO ---JM EX.PAVID04T REMOVE AC PAHBIdENT AND BkX W1 FE49U OVERLAY -EXXCAS---------------------- EX 6tw- -------------------- -- -:7 .7--z -7 4a.: ♦ • AL RIV L41D oot*ffgucnON 201 @)-- RswOW DWW CM AND GUrTER+ ce. 311,CASE v. Il &,—CONSTRWT TYPE A-8 CLIRB AND CORER PER RIVERSIDE C"TY S7D.NO 75+23. W.*911' So- CAC.OWN 14*AB.PER GEOIECHNIC-4 DGWEER�S RECO610&nONS cgmRtx7 sTRErr n ajoym cotom sro. i000(9,5w tcam)sTREE7 Laff cowwwr wm DEPRESSION PER mmme Comm s7p.No 0.50, S"ALK(WID -PEI?RM)PER MVERSIDE WAM STD.NO 400 iftDRANT'PER AW SIT).00.W ACCESS RAW IPHER RIVERSIDE COLO"STD NO 403 0-RalOVE AND 0SPOSE OF DOSW CATCH 849N&&XAL DEPRESSION If w aff DnW PAVSM PER DETAIL ON SHEET J. &_ANO SLEMW SEAL MST PIPE. WF GRAPHIC SCASCALE, Rw MISSION TRAIL @�*-AOAAT SWARM SEVER MANHOLE TO FWSN SEW" RELOCATE DaS AIR REUSE VALVE PER EVAW SO.NO+W-17. R�,s!,�"P ,�,pl:� @-ADAM DZW VALVE CAP M MX b d 1; It RELOCATE DD UMffY ST PER Ullff PLAN vL,!4R�E- 111*REWW 0057W AC/AR FAVENW. (INFM 81 -, 6- bb- W ft u DEPEESSION W REVISIONS: PREPARED UNDER SUPERVISION OF: PREPARED By. 3 PETERS CANYON SUITE 110 CrrY OF LAKE ELSWOFE pyfE[mWIL613N MWAW IRMNE.C 9 JOHN LAM HONM-MCT NO.=20-1 SHEEr CORPORATION A 2606 STFEET W"OVEMENT PLAW SCOTT W.MESON DATE T: 949-679-DD90 18 CUM TAB[f RCE MO.49W EXP. 9-30-06 w MSSM TRAIL OF OAHE I UMIN I R�j KTA THESE PLANS HAVE BEEN REM MFD FOR COMPLIANCE NTH THE SCAIL, AS NOTED 1 BEN ARK: 0) 1 54.95 3500 89' 57Je APPROPRIATE CONDITIONS OF DEVELOPMENT AND/OR CITY AND I RIVERSIDE BENCHMARK MD.BM E-3-70.ELEV.!279.829. BRASS Fnou STA. 69+00 To STA.76+50 47 nom VAY=BE ISM. DISC IN CONCRETE POST 72'NORTH OF'r INTIRSECTION OF SHEM 7F, DESIGNED BY: MKW DRAWN BY. EDS. CORYDON STREET AND MISSION TRAIL 2r EAST OF THE cENTERLINE OF MISSION 7RAII DATE: _J.M00 BY MTM --c MANAGER- a-==.. ENGINEER 1 W.O. JFOR: F.B.J FILE NO. E��_ cio _��_��c_�—mac •��s�mamY®m ��---� —r�-^'—�—,-�-=_��®�� Si Q�SLfJ=SSA®>CC_ J�iCf=����t$CCQ�- 9C®C-�.=Q.�•`•�- T-�- -•-- ����w� - aQcs�m�������— —=CSC. T-----_�__—�— — r-er•��—c_— S ---5 _. Fem=— •^" — ems--^- -==c= — ==--=r Qc�--_=--_ `.��c—_c= =— .�..— _ ,4,'s•y" 'r� �_=-- z_ � c?c— c -cam•--� - — —T- --��� C�iL�fi�1wi71:i:Tr -- ��_��_�-----aQaa:CS_O [��G-=���7C Y�9'•^-�—���J' —v��.-it---��� �--�• —��C _ C=7i�— ��r�� !.� �.-� _ •, Qua=!�� - _ —_===_tee==_�—H�__�= �_` =a—�= �� �_�'�—c=����wS'�� "c�_���^ - —^�—•--•� —�'-��� � cm�� �_zc.� — �C �CCCC=-QPS=S_�e=--- — � - L'T.=`•— r.fl�b.i..rAS-- ^ IrS � ��..�-- o ="`�—_ ��c ��_ —Ti'OT.-- �., _lHOM ' — C=a=a=_�G'C:a�r=C;a=✓:arrs���CbC=_����o�Q�S=_S_ ee�b�,g�rv�'rD��Y —Q Ciil�.••rn �---���_---� MEMME —"�_�_— =_— —=c—°o�'r���-'�ma�"i—rsa�=v_*-cao��==�:cam -- =�o�y-cr•:o•- :ems:-�sr�-vs�E.�z _�_e�_fL=�-���-- ��_zs_� -- -- �C'e'•�-��--e�� ���"S-. r��� - ��:�C�GS�=� �''YL_ --I_�:a�J•1C•:;{e� - FI_'�.' �TC�-- —�=_S QZ�C — �a�7` ��—�---�QQ=—�-- ��-- — -- —�� ��'Sft�� Q QQ:�_=CCU==== �0 ���_= I ••� -- ---QC_--_ —_ --_ � GCS— =Cm'._^'•^�—^Q=Qm®�ww��—_���� C C^•�S—='t���_--_-----_ -- -----�.. -�_--- _�= FTFa=o --_ =S�wf.CCC--- .�—�C—�=�_ —__����L:C _ ---�_ —•- -----_—__----- - =�5�=—�---S—i--.�SSr�--..�_ �S =_�-5.-.^-CCC:= ��_ —� ---��Z--W _— Q1 ___'ram_ -----oho _---- —•.--.�L3I�SC�C,�—= �---- ��—��—__ ��---- CSC Awo I ; Ic-I������� - Ifl�m� ��e sly � � C � _ _ � ,• , eo��.�a1�Aall�ss Iced , erle IN Ml �x 'I ll'�"Ilx"oN omm'\' - � mwww OFM,7,= " � I r�r r ee• � _7•_I_�9�111 ��� . - , 1 - 1 1 . 1 •m = === ��� i ee-�1� • I 800 2 7 26 0 1�o� I' I 1 I I e:n::��•:i-:i:��i II:.71bi�:#e-rtfs ,�. •♦ . I 1' �����i���������������������11i®E��t�'€®�i��Ld�l�����® ���i9��i11�F�!l��l�E�f��1!!! ��■ ����������������������������� ���A11�ffi���t�€���- �� -���_ l=�iiiiiiiiiiiiiiigiiiiii■iiii■iiiiiiiiiiiii �ii■iilEii■iiiiiii ii iiiiiiiiiiiii■iiii■iiiiiiiiiiiiiiiisi =iiii MO iii- ` iii ii■iiiiiiiim i®i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiil � maaa- -r- e}:•'��. �m .$ a^ a_axa ® r• :r r., _ t- �����i i ■ ■iiiiiiiiiiiiiiii ■ ;,., iiii■iiiiiiiiiiiii' MEN iiiiisiii f� E=i0 iiiiiiiiii=is iiiiiiiiiiiiiiiiiiiii■iiii lUNii ■!®i iiiiiiiiii■iiiii■! iiii■iiiiiiiiiiiiiiia. iii i■iiii iiiiiii iiiiiMMs= i ■ iii iiiiii iiiiiii iii �= iiiiiiiiiiiiiii iii! liiil!§iiiiiiiiiiiiia_ ° ism ■iii i iiiii lI�i�6li!iii$ iiiiiiii■■i iiiiiiiiiii _�: 'iiiiiiiiii '=. lai si ii:� iiiiiiia++iiii■iiiiii i■i!I!i!■ ■i iiii iiiiiii'i'i'iiiiiil#,'ii�iiiiiiiiil _ iiiiiiii■iii�iiisi=�iiiiE ■!! iii 4 iiiiiiii i ' Sam iiii � ' a.= Wool iiiiiiiiii! i .��:_ _ii13■iiiiiiiiii iiiia ii= � ®��ii ll � ��I��l a {�■e Owalifffill iii i :1=i� ill ii iiiiiiiii iii i€i a �iiiil"siiii iii■h ill#iiiii it ? ii 'ilk ■{1Qi■iiiiiii ae#iii : ! i ® iiii�a ®i®1 {' ii!lliii��-iii 4: i�_ 1i�ill�iiiiiiiiiiii ■iiii# _ ii??�� f� ■i�l� ii iii■iieiW Ell!!i� a� �' liiiiiiiiii l3#�I;®lr�on.11iir�i i iONION iiiii= EQ c -°a3Sixrm , $ •r-cam°em s.,!,sa =¢�` _ i i�� i���l� �� E i � l �� S�, i� ��_�� _� ��5;• °_WIENER �■ � �l��i �i�i �i��� �� a' i iSl iia�I l®lif iediffi llo iziliu der rr fvida �i � eg E l�� g� EE� e� g r� Eii=ii:caeca_l�!1isii iii ${ F � � s �li ■ ii iiiiilEE;. $iiiiii ii ! � $� � � i �9���1 ��� ;r, �ie& �� 8o - == ill iii .- #iii ii 4 ]is■!i!!� i�a ire- Simmons iiiiiiii i iii= iiiiiii■iiiiii: m a ma a i E - re!s °n ° e i ° °- r r� - �iiis �il��is�� iii l€ilk�l�l� =iMEN+�iii 9i onmimmAgii win a� it��i iiiiiii#Ir !Eiiiii�iiiiiiiiiiL��;f _ i s;i:■iiei�?eF.6 . gi':iiii■iiiiii$ii�l iiii l4t04 SON iii�g� iiiiiiiii=iiiiii �iE��i�iiii�r=_�_���O��ii�.�{iiiiiiiiiiiiiiii�ra:��i��l�ii�iti�iiiiiiiii■® i#�i�'�I!!11!!■ iiiiiiii?#ii!■iiil� iiiiiiiiii '!' iiiiiiii■iiiiiii�l�fliiiiiiiiiii_ `}1iziiiiiiiiiiiiiiiiiiii11 ii94i� 1ff,; iiiiiimia{ =i�'�li$ •iiiiiiiiiiiiiiiii #ie_'s5i ':iiii €iiiiiiiiiiiii =� iiii ■■iiliiiil ■' iiiii■iiiiii ' iiii ��11 ® iiiii r ° ii■ 1Liiiiiiwri 'iitE'E i. iiiii�iiilii�: siii2ai'iiiil , Mii■!1l111■ iii�lll!iiii - i !f�64° �®i�j ilflii ! 1liiiiiiil3@!! iii !■iiztilEiiiiiiiiiii ;ate �ii$ii-i .j#111i � gg€ a� �e g �t I,{r ! iiie ii ERE, Qw '■iii! COMEii iiiiii! i 11 � iii i■iillli�iiiii�`•.iiiii= �exiailaa ° • #lllill�ili.�;., �:°' "-'< �i r, 1 ii�, c ms:a III IBM �ili5fii #i®ri9� iiii ! iii �elll iii ii ! llElli 11� iiiiii■iia�':liiiiiillsiili� iiii iiii ii=iil{il{iiiiii is # ii iiiiii iiii■l iiHUice- E !ll� ii°_1:'l�i° 1#iii■ i�i! LM ll iiii 1IN iiiii i �I iiii■■■iisj #iiiii'= s-r 9fill i iii-4:!lllfiii11_ iiiill� ll# lliiii il � ■�iilii■l�ii�3' iiiii iiiii_ iai;lliii iii i=i�l°'=iiiiidi®`i�a sill#iiiiiiiiiiii�il.9�iEiii131�i i■!■ iii ■iY:I'.I�mllamliillon i' iiiiiiii i ii i''i iii ! ON ■iiiii iiiii iiiiii= e=:::--�- r : .:� ° ' iiii ;1#ii■u� iiii ■ il SEEN! ■ i!i!®ii ►, iiiii �> isii= _ � _ � ��Ee?�s� � :- .�• �� �� ��� �: ;�;#_ ail!® •ii■ �1�� �. ��:� ° a � ii �®Niiiii■ ■ ill ?l ri'ig3[ lii�r� NICi'�€i■i iiiiEiiiii■�iglitr,l iiiim_:ii l l�iiii�■+ii� �iiiiE�iiiii`= ii■i�Ni�=No. F_'ii�Y i��E 3F�ii � ��■l�i�ii�l��i �� $�!'iaP�� m !Rgmm ffim ffimq_ _iii_iiiiaiii �I { iiiiiiiiiiiiiiiiiii► ii 'li ': �` �i■iiiiiiiii �r`sliiaiil"ii N�€iiiiiii� i � �! ii �igg � _ ii= a>ia ' ��ili' ig ®li? y �a�il f i �."�i[Rig-�yi iii�p3l�i■ iii�isi :! ;Iligiigi iiiii■�glii��lil'�iipiiM::iii ai_ �_ •mot��i i mFla > i i ii iiirE i li �'! 7 { r i�l®i� i'Hmmlf■ l :i •.vE_ i lT.alWi619110 !@1ti7�■ ii � �36 �E �--sa��Fiia� r��-iE �E M®®mm=� 3 �m�e�li6i� �NFE sa' il�i�ls'.F:E�o��C; � ag.:? _ gxy $ 3` ts`; sFca�:�E g g $ r� IA- AMR di $ a- r� � �..'.i�iiiE ii�c Ssiiaz �x i�a�:•^i a l l i� iii ;• �s?u�iiE:.'1!22rii� ® l S:!t'3 ' �eL3 3' �� i rS i��i i l Ali �lam!In �t�li���l l l 119E �ii Q: li �_ =�luee3osesic l- ems £ � _ _�_ � jis:isT==:s :i , :� iiiiiiiil�i°_ _ iiiiii_ii : iii= iiiiiiiuii iiiii _iiiii Isil�iiml:.. ii:�i�iiii_ c�`,'e�---..._ _..;.._ 1 ,__a .-;_yt.a.a:.,_,.__._�5.,v��..,_�...;s��- � _ 9 _ - - g g�� S ■ i" i$i� il�Ru'S;.Mi@�."^=_L 'Eft e r r. saa NEE iil�iiiiiiiLIA-Maiiaiffin_iR_MA-lit�ill#iiiilli iil�iii swishiii iilliiiiii��` :El iiiiiiiiii s ki#e s I€ iii iii■! iiiii = r�@� $� t�e''ee•;3,xa. i52 3m m� Z s.g��1� 6�r1� E ® _ �'..jwd �'-'>'Fr ==amimxci3E�-e�..elliii$ilgi's'c��r3a: m�_x_� 1 �ggES".'.�ai�'aaici��ac'�•_ ggp�27e1 'g�E■i�l����>��� > 18�31� i■� E !!i■ ! ii�$E �E � Zue :: E:�iillinimmi �r����4lts�3i ���- �iiiliE` � iiieliiSiiteiii�iigiiie�ii ` �xiiiigi 'iiist�ieiei�ii3iiii11811E il���iiilii�■i� ��i�■!i il�i!! ! l�iiaiiiailW M a :' i✓:B soon=i�ili�� c= vi �� i - r Ron� iiiii_iiiiiiiiiiiiiiillii�■iii■i■ill�ii�i? iiiiiiii ? _ il _ii_l�iiiiiiiiiiiiii = t 3 ��s�siiiiis�;iiii'=siaiiiiiii'��siiii �igii3ieii'i_ll$■iiill�t lliiiiNEiiiillIN l3iiiiii■illlg■iiiiq�i giiiMREliN%ii�a i!!#■ 1i6��•'�� 1=?��iiiiiiiiiiiiiia� € =��iiiiiiiiiil e.�€ =_iiii ! l�!$iiiiiimi �55e=°�i� i�iil�s�iiiiiisaiiaiiiliiiiiiiiiiiiiiiiiiiiiii2�i■�ill�i!®iiiii® i�iiii�iii3tiiii$iiiiiiii�iiii�ssi�Eiiiiiiiiiiiiiiiiiiiiiie�iif> iiii i =iiiiiiiiii�aii� iiiiiiiiiiiiiiliiiiiiiiiiiiiiiilii■■!■!i=NONE!! iii ■iiiil�iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiil : iiiiiiiiiiiii �ii�ii�i�i;lliiiiii=_iiiiiiiillliiiil�iiiiiiiiiiiiiiiiiiiiiiiillll�iii'iii�'iiiiEiiiii■iiiiiiii■itl�iiiiiiiii;�iiiiiiiaiiiiil�ii'iii?�iiiiiiiiiiiiiiiiiiii a=aiiii�i�iiiiiiiiiiiiiiiaiiiiiiiiiiiiiiiiiiiiii�i�illliiiiiiiiiiiil�iiiiii'liiiiill�iii'iiiilllell#ill¢i'I�iiiiiii���iiiiiii�i�l���iiiiii��iiiiiiiiii=�l�iiiii= • 1�i�ii�=iiiii�iii�ii��iiiiiii°�'iii=iiiil�iiiiiiii����i�E�iii;iiiiiiiiii'ii�iiiiiil��������iiiiiiiiiiiiiiiil�iiiiiiiiiiii5�r�iiiil�i■iiiiiiiiii�iisa� � ,. _ ====�imiiiii� iii�iiiiiiiiiii�iiiiiiiiiiii's ##liiiiiiiiiiiilliiiiiiiiiiiiii►�iiiiiiiiliiiiiiiiiiil :l# iiiiii' aiiiiill'#iiiiiiiii : aii ?iMF9iiiiiiil�'iiiiii:�iiii gii3ii=iiii$iii=_= ��" i=iiiiiiiiii= : �i�i�=_ i�= i � :i�iiiiii��=��� ��iiiiiiiiii�ii=iiiiiiiiiimii#o•.�i��i��iiiiii::=iii���iiii NFL; �4>§ii iii i ii ii®iiiiii! i$iiiiaaiiiiiii;< _�___=G°_ g ga� g =ter.:=z_��m e?�i��2��ii�ii�3�i�Siiiiiiii�s�i�i�iiiiiiii 111 �i�iSTi�i��i�iiii�iii�iii�i�ie��>��i�c n�•.e-�iii���iit�iiiii�i�iisii��i �ii����E��i�iiiiii�la�iii��i�i�ma�� _ 3� $ _siasiiiiai>�i� �iiiiis�iiiiiiiiiiiE�T��i�iiiiii��s�iiiiiii;=iiii =iiii�i�i�iiiiiiiiiiiiiiiii�iiii ��a�:_�iiii`====iiii-- -- -_-�-=;'iiiiiiiisi==aiiiiiii��ai��ral���lt��ii��iiii ��i3di !■liiiiiiii�����iiiiiii��iiiiiiiiiiiii _aiiiiiiiiiiiiiiiiiiiirii_v cM i{iaiiE� i ■iiiiiiiiiiiii�i �iiliiiiiiii= iiiiii i'EiiiN�:��iiiiiiiiiiaiiiiiiiii= iiiilai==3i®iiisi2l11l1iiiNiiiiiii2MQiiiiiii11'ii LiR:iiiiiiiil '=iii=iiiiiiiiii :i'iii=iiss�„•�=iiii�iiiiiaiiiQiiiiiii;`fii�Fg�;iiiiiiiiiiiiii iiiiiiiiiiiiF3i�' '=€�iiiiiiii���l�iiiffiiiiiiiiiii�:ice;€�Eiii�iiiiiiiiii��i�iii iiiiis Egg iiiiiiiiiiiii°�ii;�iL iiiiii ONES NNW MEAN iiiiiii�W'Aii11 ii`!' iiiiiii ; =i;Iiiiiiiii= mii RE M-i iiii _ lciiiiiiiiii■iiii l > iiii iiiii '�iiiiiiiiiiiiiiiiiiiiiis=_i it li,. iiiiiiiiiiiiiiiiiiiii;_ Saii'=ii=ilk=isiiii=miiiiiiiiiiisiigiiiiii iiiiiii> zigi$iiiiiiiiiiiiiiiiiii=siiii$k; iiiiii iiiii gaiiiiiiaiiiiiii�iiiaiiiiiiiii9' lii=<.s__ _iiiiisiiiiiiiiiiiiiiiiii�iiiiiiiiill=iiliiiiiiisl3iiia;= ' ='- _�_�=���li�iii F=._. -. • Nis_a.4H:3iiii$ iii� iiii:•;lliii�= ;iiiiiiiil3. iiiiiiiiiiiia ; iiiii -5- isiiiiiiiiii=iiiiiia,i._ .�----_� _ n�.�r..-.-.�_E3_ a��i=l=iiii;=''�-=i-----i-----��_a'�=�i€€ _��i'�i=l���iiii�i_i�:�ii=__:s�.�'Ea� - -----®- ii l�iiii_i_._... i_iiiiii_iiiiiiiiia_ii_ia =fir.-r?.•��- MsiiiiSi�szioeiiiiii ' :e •? "�$.'ii¢'.s'°a�..i'~i � i� �iciiiii�i@'4�.i='c_ MR SE i=EE M M_M---i_=_9_�i � _ssia��s�r _sa���s¢i�ac��_x���a t =xassiii smite ai=ciiiim��_ma i= ei?iiimi=== =_sie_s�Siiisii �ci azscii3l1 iii ii �i= _-y__s--°.ii'>¢ii iiSiai�s ii ??Sigiil: ="=are 53M��Bs_is---- iiiii= ¢ �'� i' i�r�•�m�� M E'a a_�a• aei_ai i =' _ g_ = its i �_ � _ � iiii—ii liii ��ii iiis�i=���ig=: 8'00 2.27 2600 ■^'.:a�c. •.::��.;�ri::.�ora �° . :, • a g����_����5=e���_���_�_�����_�_���9��_������€����t��������������������'�'������®�����������������°��•$��':����_���`'=���E�g!!! �•�S al��.sd:g g•��" ���� � �� sec ��_ sr�.cega _��===asas =3mc=s as s= -sas xc --i:$a �S _ =ice= s x =--s `-_ c s¢=a== ==c�=sc =_=====5Z�= $$ ----- -_ a s-=_-- ee _`—a�s� -.....�_a�a� ===i�ss= 3tig��'��r =-� =s======-�s�' s=s=_ass=� �y�._a � m-=s=ssg _ _===_=s===sc-'S32�SfRZ_=MMZZ:�5a� =ss csc=c = _ ...- -- -s•• ac==__ _.rzss:rs:=_ xrs==s=sx=^=r=s== S'=s sa==sc- m==s-=csmrs==ssa =ssc_s=rS _ =x_aass s �s �=asssscs- s�-t = _ �� ¢=> s=si � S� s ���� �?��-c- =�_s � 5��5= �5_�x_s�_a_a 2xa'�co-Esc=ss_==cx=.-x-�ZZZ: =--- _T-a ZZ NEE =M_==_sac _ _ _ - - _ _^ - rse:aas:= - -=-i====s.==s==--=----_ =M=M=M=ssss== sue ESE gEE--®ssssss9sssc seem =====sssss HIM! __= x== _ >as a==sc===a=o - �'_m�x-=s:xrcc=�--== gsgg---=______.._ �_? s ==5sZZ aaas=s�i•=aaffi3m$ 5scsc�=-ate _® ='_ 5se�a5s=as= � sssssz�.z`. a=a:zc s s'====��_____`= a�=� _ ==-=cc===� s -� .= -__ _^s>sz==== sc = __ =crs_=_ aaos- =s^-_ M---_-__ _s__MEN_ _ F11___^_-___ SSa C=g=G_=-:a=_=gggss=a==_==- __ =mx aga =xs=sx=_= ssssai=Tx.e=_====:€s-s-===cx s r==a== =s = aac_=9=s==s =S ss -===s __ =_c_s-= ===oo===_ �csx_as_===s=_=c=====s a= -_ r�r.....�� __^== a:a==sarc=rs¢x=====_=c----s=- _ a=_xaz=a�aa3ase=>rsa= ssxn s=o==sc=sms-s-= i=s=-m=sse-xs=_ _s=area==e=^` =_as===s =s=as_ _===s==•aas xr= _ Zi - ==s¢=csai�s= =ae=_saa=a=_====s= _=i =�s- a=aa��•c=s___=ass=a=ss =s = s=s`=ssssy-u='asa?=asaaa ==s'a"::.••a .z= =-s:a= aea�= c c=== sx= x= =s-'.s= -==mm. _= x === _os= = =_-=__a= -_===asaa= = s -s s=_-_a ssassa==iisss ==z s =g= -g s_==>_i�i_:==¢-=g czs ='s`ss ssssss3gs=.�5c= c9 =3s=c= =s aeMEE -s.==-=---- a=c-s = cmm aria_ a-ss>=m _ _ssj•• - �sa�,saao�aa -s-g r�•'es=sas __a x===- iQ = =ie=agsr- -sue-s^sa s c=xc- s a: •xg3sa sv=_aac- ^-__- ?a_a_=s=s x=_x a^ ==aer s - - _- > x-Ts�a�ss3==rsa¢m=az=rg===:ss=xasae=sT=ac.`r..=s3a = -=T =`, �.s £'= sa- =Ta-x-==-= cg=='Q -es Ts===asc>=am- as=-=':Ts?c=== _ a s $ ^s__- F=cr$=a__=�Sa:�-�as-s=ss�-s = ==aac=- s==c======ss8=gs=s=s=as = ;=_ ___ 5as� � = _ � aa --s��c-- x- oa s==c= se -a - xs __s Ss=ag3ai_•==--tars`rss��aassa� a�s�_ a --ss=aa==?'Zssss = = �m_s_c- sss =s �i�'=cs=a==ssa==s =ssssa Ea-s==9or==sacra = aa =a=a a= - - s== -:m -s- s•- c__ -_===sr=s - - ia_-__=- _= _s=_:ae==__ _ •-_ -=_sz_==aa=a___ _ x=== �ta_s=ssx°�ssssass=ss=$ $$i a==-====sa asx=_T�=______tea _ _ _ a=_=_a==::� -====m=ax__52msss� Si3�55?_sexs=s '= aasrQ-�"a-a' '.: s = = s � t� s= c � 3ics �EoTs.e rs�6�i33esTss== s ss= a =` =ccssaz=ss s===ax==a = - s=a_---om__= as a=a= a i= _:•:• ,::.._;.... a; a a r� s_- s x s_=¢__ = -.s3 -s = � �g_gsss� =aa� 5s � �:� � � � 5� s5=ss 3a _ __= sue = _ �� = � � �� �� ' �as�ffi=s =__ =aQ_s x-s�=?===s=�aa"`ix$QmT�-?=s=r =�a = =-s® >s •xsx3£c3=s = s '�e :=r�is � ssssis; s=_ = z�$$sisa. a: -a==xramrs=rs==�= ss=ss•s='a =°3•`��e�ss=s_sa=s=ass=?�= _.. - _ -se ?�=-asssaax�= ;$ � a Tss$ sscE saa six s x as ==i=acre=T�• ss a s -a s:.- = MM s=o=s_s=c=p� ac==ss=3as �aac==-ty=a sc a==s_�cs==s a r=a •Bfma==x--= s=c ca __ = x cca_=-= __ x_= _ __-c xxm------__ _ s _s_c_- _ s_-_sY" imrx^-=ssa =^i-= s_- =s=�_a• c==y- s_ s =---_-_=---.---__ H=gz_==a_=====e=a= ===x==a == s= _ =====x c =asaa g te_==` __ _ __::--____=__= ss _=Tz.c_sasx sss=crag_??__- =->r=r==ass=_s-=-=---=-=c==-2 -_--_=^..._a=a=_?g?s_a=-o=_a=ao= ac -_` s= _ sc� x sax=_¢=_csx-=:=�-s-____s_-_- 3.x_ 'i-a s=a_�a___=_?__¢e_s_s_se xss =as a:i.=a as===_,_•�=_=r_�$s=_==s=sa===as=s= ==mana $ =___==s__.=a?�s-=. =a=_===s==c=c=sa=_=xs==c_=c==___=== - __ _= m=aa=====amc��a= == saacsssscss3s�y„==_=a�ax-sy. -= a-__--ac- _ _.-M===ms===six,= =as=mas �ss-ig i � scssssss�asaasassTsios5g' aei'. ni�$> s ¢¢�s=ss 'ems- =-:�v::m_=zs$as_x ssaorc �s °� _= s==si ;.; e2 MEMMSSCx = �aMEEISCL�2��5_ x-___�_� _ �, rFL_x_x__ _— :� _a _ _ =sTss=osxaTs_8===y_==sx�sscs aca=as--a=s=.-=a=ZZZZ== x=a-' a:§=e:c c ® ,_ za a arsryz� xo-=-_ _ _ - sasc-m= - = s '=--___==-_-_==s__-s_-__^-==s=L_-�-x__-==_=s__s=___==__-=_a=_=s?==__-==a^s..a-=_c^:a.=s_=_-a_-=_s__---a_rr=.'_.�:�_-s_s r.-.._:-•-=_e_-_?_c=:_=-=_-=.a_-_^zs=s�-_air�iziex-_-c=5_-_s-e=x-s-=_-_5=�-=-ac�--ca`__asaas_mas-s__rz=ss.:"..'=-_..:=a=�.�-g'=_�x=s2zs:_s�x-s=-=a-e..,_as_a_s=--_aacxs=-=e_ssscE i�$g=sse�rr=si$��s-s�a=s=_s$3.x.^s=�c__a-abs-��t_t=icryessaasx==��-�=a=as��_�m_5€^-5'5=_��s^=a�_s-5__�rz5;:,,is=j.=.r=a_.-a�.o-se2a z=-s"e_-s_=_s,=_s__-=a�_g. = -a:_5 :_�a_=_••=^������.cc s=s�-_�-ar_-_csa_ss s-�_i=�_�a=c�=^�_as=_a=`sca ar=g^✓i=�_a___a_s_ =s� s __r _= a - - ==m2 = :.:.-.. , s sm• aso=s=s= x a=� = o- -gaa3ax - . ' s � __ r= a __ _ =gs= s_ __ c == :_�� S — a= a'' a.s _ a=_a '= =x�em_-_-- "xa^=L �= .�x¢= _ =_ _ i _a r� _ _ a _�s=srs_a= == _ = _o=_s»Fat"-_._ s= = ==_s= =�i'� ss� ssc=$=ss =s 3�5=ss_=spa Tom• -_s ?�s_� s `== a= -_==a-•-=ems==sue===cc=aiT =i rT''':'.'7ii� z=-=gTMEE- ?sss=S�3fs=sax-, sa` a= g s-mx_ :a -' _ - _ _ =__ �_o-_ _-=�_=�aacs�s�-�-==si='a?gs:�S=Ca��r'�3���_a-����_Q::5�=?_=_sa>a�a_1�-ss_�_s��s'�ss�s�s�=ss=s�=ss==S�ss'�ss-==a=a, =x==csa�z== 3 ===s=cias_-ss > sib»=ss's_ss5=35 ==a-ce .. a= =�ss5gsa £", I3i� � >� =H===_-___._ -=_ss=5a==a = a-a= =�5_=-=-__ - _ =- •�Saa_'agm = = smax�s=_=s==:_� ==c===- es=:�`=_= _ m s-:ems• ---s• :=c¢-=-- as-- x= a s- _- s=ia =a=a= x_ s=-g-=-- __- _____ ==:.___��_��� � �_ M-_� � � �___ ;tea__= -=a-= `� � _ ___� Zi=sa= --�- _�=acss__:ems:.=__----=_sscsg=�=ems=ss=s== =_=ssas=i�sa��s-----��as�=�=cam,-. _a'a�32$��s'=?5��'asi=•s�s=s�ss��s=r?^�=a`csi=a��'§_ea�_ s=�$��s3�c_s�a�ssa�s>;"'=�����'��i�a�s�>��s-= =xcs=acim �aa �:c c' zt=a'c�'6aaa=== =_= _a a@=_se=�--sass sss `a_-_ a-a-a =-c�=W�_ s:_:=:i: ,• �: i� _ .= _'_ •..=c:..._. _ _ =^=a _ sE- a= _-_= s- =xas=�= = a_ M- - m-----=x- s_,.;_.T_s_Ta_ szTawas$ si=zi ==_-asc_: asma:__a�ssrx_ s?Ss �csas-3 a= a� -==s_'s=_x =.-c===a=s=c cxs=cxs = =a xs=c = ---sx.ca = - sisac=-x _ _::mc= x-=sari-__ _ _ '.a•_ -c x=.____xzc_a_ == _ ____ _= c=== _==ae==?c=?=s=cs=e::c:z::e:e__==c�S=_a=_=-ssaaas=ar.:: as: :s_ as_ r==:as = 3Ea :-ce#Issue=sa=mr=s _ = = T�csss==xs=smm =m==ae�s3e:a=24==� >== xs.s=a3 ___ __ __ _ _ _ .-_.- s� -_ =css= a_ sxc aiz=scss __=-_ss=s$sssa -ss=s.-.g-$s•sssas -L s?_ a.__ si=_.i=.. _ _�c=a=__=sis__=¢ s- s= _-- _____ _ $ =s_a__=�;-- __ s'a = `: = ?z =• _ _•_s===3=s=ss-- ,eat == xa�ss_@saTssrmsxs=:ersgsss='=_ -.. .r.___ _�fx_._�x� s= -rn_ s �- m r _ _._m_______ __ - - --' i��$g__�' .-_sc-- �i�_sa_'as-.._-=c_ars�=��s'--�s==i����� 'a =���__=_=�s_�sss� _s=�r�sms$csss'$s�___����c -• _ _ _ __ _=_ _a =_ _ ssss� ss_ 5���s s.-m a cas= s=x=ss=--x �_:...- _--_a=_s-=a_ _ _� s--=__ ,_..._ _= a-s=` = ra_ =i_x__sx= r"1• 55 a=a=osxg_ -Taasa�===$-=s -=-ma_====___ '_ >.�-- s = a anaoe = >' sa'a= s....e-s-ez - saz=_=H=cTzs:::-==gg==_ss$ �ssss_zsc=_a_=s3a secs=aZ= c saacsa_sa=xxrma=ss___z=� ssasss� � im sss � ��s � s �= =ss � _ �� �==�aos� s � 5= Iml I,,1pN111'' _ :;• ; I•Yr1 ���IIVI _ _ r. • -� r IIII �• m • �jig T : I I �I 8002.27 2600 ■m.���rx;a,ca��■;.n.Js,,�,•.�,a •,. �.„I ., ,.:• � r,SI L 1• it � ', q „ on IMMUNE 0 mummom mmmmm"Nummmommamp a a Ong WIN ON ME Effimmmamme ES Immgm MEE IME MOMMIN on in Bosom Hon EON on 0 ME— Ell owns m 111199910 laaffiffiffiam Moog; ME NONE SEEM MrAllono as ram==---- a� no WERE NONMEMBER man MEIN �Q�$��a�������������+�G��i'4��"E�����s�,��iE������������ss._-1'.���s��as�''����c���i���j� ��✓������—���C��®_�_���_'i-c.c..�.s�m�'������_�_��__�i��_® ����� �_f���������®dFE�������� ����������, •a- tm�®mr'7,TCMMal Q.i .- II)ICis •? .1p[ .� . 800 287 2600 '"'":: �,>`:`.;::�r:;rr.•ie:a�+,� •-o. ® _ .. ., ���■�� ge .Fa ur r_r!4T_r1_..Y•?g? S' x'iLSy {, r ,fb%t: _ �+;[: -vr,sr' r4afr, .frrv �f7�''�c. . 'Ra'(I![ >�. 's`:s ra♦a� W �i F� S 2 C rr\...W.3 �i .�::+ r C,h 'FY ,i: •P .J .. .., ...'..ai: a. :., v-+f':.a L l u r� i .;11:.a.A•,y,xr.. . : ': (_.Y�.Y.. 7 >r? 1:iJ.s3�&'Tyra•-•ar•�'. f. Wry '✓ M -L J ^.� ".y _ - r �y- f" ...v..YJ,{, - - �ar.F vim£ 4YS�,1' _ arrs• _ F r �}s,•. .F.• z, JJ Yw� ii• -c ri.•r ii�� 3.'F - 7 S t.4 tl.. r' Y. , ,.. ..... _.-...,...a w�n .. : ." 9♦ •+.L.:,.. ..E^:.L_ ti '. , Y 1S r✓._ ,:.'� :^,,: N. "J.,' •R.2: �w4` 4 ri'<. ."'t' �-. !� ,:rt'. 3!' - P'• 1# 'Sl. J :� ,SaVJ" - •P - r./�5 F-...1y 4 ,'�s-, y t•� ,k .fir' ♦ Y•1 •y ay. pf • _.: - - f �.. .a -"1 '.. .of .. �S.Y.4,r :2. . - , h. ♦�-. r ':. :. , l .- .: t,�G-y. .-A. �. .F f•', :%'1 - �. 3 22 3 .Y5",� .�-..ear;... c , �,. ,{,•.Y - 1 .. is f .Y,. .'.3�•at � ,:e.,-.. .r,s r i :i "l•: r .-F 4a 'Yi•Fa t'Y` •.C.. 1 �HSYE• M 4' ' . ,..,.._:.,,s.�s4 -r_°k. -'4�'v..r.:..aw.i•:;,. ., [-. . .,.7,,:r..:.+,3k.,.w,rn�.: <� �� ;:: !•. ;--. .' -L>..-.:.r:,• - •r:r �;,r,'.,;.,::;�.•i��;1T:�=�t'�.: _ _ f E s+sf.-,k�e2 ti ti:�#�:4 a a s.. :p. �I'• er.� r:.E;�3•4�31: W�[-� ti.. °f :I. .i_.. is ' -- _ '3 ..P - s 3 ::I. I I I. I' :�'.r.:23cy.Retiro ''•t:s .I• ..�vy� ] '. , -� f`I'�:�-�-rrl-: r� •� f E E °,296 •,Sat E'� .x�� 12 - ! � rr�-aLL - = -�- - -- 1 - i_ V. r _ 92 }. .I 3 s 3 .c 12921 -� 1 - I - •:;. i 3 �:,r- ryl.j.` x . - - - - le o . '�_yy '3 r I'T +I,.I . >'b,{'t:�-4.'�a;. --r--- - -- •'- -- ^� - - S :ik YAW f - - - - i.. - -- - - - - - - I' =I-'-}-'R - 'T .1288 _ - '- -�I _--1 I- rr ,1264 12114 I l i l I I 1 1 CI_ 300.4o I I 1 1 1 mTL7 ; I ; IT I rI _I I _ r I__ -� -� � L-I-- -- -�' _�.-�r�T- 4� _r - ��--� T - T4 _ I I Ilt. •� _! - --I - - ILS A -I I.- � _ � _i 1 =12T6.ao _ 1280 M �_I-_ -� ,i76T - ! I -PROP06E0 ` R INEP OFILE - ��`" t I I I I I j`[-�-1 �- -� 11-I-i -I r-- j-I'I ,ere � - •.I ,I__I. I L_ ,272 -� I 1 -- -� - r r- - - r: --- II 1 - i f - t I ! I I ! ~I I - - �- -i f err _ =F1-1 I__ L ..!_ L i �: 'I-i-i I 1272 nl. _ I - - - - -- _�- __ EINOC NTERUNE�-.IlE -i-- '-L" .�_ -;=•-I- _I_`� - -�_ �- -�- a, L _ _L-� Ik i IF II4r - - 1{rI I---� + r- ;- 1268 -- J= -- =1- -I-I 1 1266 rL _I._I_ :.1._+___.I_. _ 1 WL. I _ 4t -. I5 0�1 T _ _ __ _____.LII1_I ! i__T I I- 'II• _�WI;I_-__.II-_ -_ _ ��_I[I 'I �!_r____L�f!I.If I _- I LI 1!i'L-- _!'_!I_ I _ -.._L1I__{E__ L�1 1 �_ i l ... 1264_ r -_+ I I I---H1264 �LT F Oi I j 1 O N: [ Pf ;O -r iv E.. N ID•-._._.O .f-I-r` �._- ,sJ.-_ ..0!'.'_ FIy-, .p_- - - --_-- I f- o �I•-O, a - + I to �•I' -I-�- O f'�Y, .! _L rn N m N 1 m .I I I !• ti I p-IN ti_I_�_ , I I� I' -I -!� I' - I^ - Y� '- -- F._-I..F �_ - O Q,_—I—O � ��O `•'11�� II1_jI!_ 126ir IT �'^7II1�'I��� I I I I ..I—! E ,- ..� f•-�," f �[._i'_ I_•f- " N _ __N N N N- II i-w- � IIl}r N N-- N IN•- I.._ I.. _•_I-- Yy N N-1• N N. �� Ih I �� _ _ I`�r` �N � .. _ ...I...I ! I i L~♦, � _ _ I '26� 52+00 53+00 54.00 55+00 56+00 57+00 58+00 59+00 60+00 61+00 6240D 63+00 64r00 ....... NOTE OAYI,GHT GIfR1:�L FLCMrNE 10 MI ELEVAl10N �-'-.•. _✓- -" +.._._....- '�• .g ♦ ' - � - � 3f - ..• �,�a, •�i- -fiSPTBYrW FS IAWYAGEfvtSEYENT •,,+ •.: - ... -.+•' .- �� • 1 'P � � din � t�-. I' ....__ � ..:. •• .. ! ijx _ •A [ a WSJ '�J� cKll!S IGW.. 'ewsnNG wx.04 COMSTRUCTNINNDTES - 1' walrnnP-71 .. / i A41 FAT.Na .L..-�..'_-`•_" 'E�-_ +�.-^� -------•_ ___ -- =._5 __-` _ __ _ _ _�_ _.I.._S__ .L..fY.... _. :::r.. .PYOn4RA t ,,Y • .;..% Li _-�_- ..yl.....�'•. F1L'SFNOkAY m ! f Q.a .. C')'c;rs..':'i:: : •:.._. ;':S (- "r - r' •� x - ;I"':�` ' n oz.rune!ae a.Nmra.ancosruaoauwrceru -.-' = `e _ - - --- - S• _ - '-sue' -� --e _ ♦', -- •�.• - u cow"Inf4Daw LwmarNAM.aEDfiU nano---- a CpbIFKIA00L&EP9f MFf.'1wLRr[Y'fl sror r • r ns fn r fr -• �� i._____ Ho I• _ .:.�- r:l._i � v Tsr:LrxltaxE Y[9iFnerasartr-amrl'K•ul r , 11 ' u 1Y ' '---" P'' II' - r((Ss ......... /�••.r;'� x NSMapWPC'CJSln;2l•DLUP.IGYJ LM.IM•SSTJ Pu1wJ NA '",1' _ t♦f� ; 1'. y! i` j '�•r+J'� ♦gGV ,,•� t p wZ,tLrvtarootan+ENnR�rVNUPr7�v'ri 10 r:. „- - _ r REVISIONS DESIGN SECTION IRIVERSME COUNTY TRANS IJECT. REFERENCE Ir P[STA m 42-20.77 ,, _ r I M1 2t69M.01 E m 6249,17.50 pE61GHEp,iW AECAMU ra � �6Y W.O.NO. ABOZl9 . „'iyY,i q• !"' ! ,': Ip .. S ��� r`a'•�rri •, ..aF A SURVEY NO, 6i81 atArrBY: AECrNRT :� .•MI SION TRAM. ,A F.B.NO. 2!93 CItEClcEO BY. R F4$Qr Ma cE TtSri '--" CAD FILENW-t 1AMISTRLoGY Eq.Isla STA 534OD TO STA 62+25 GEO BE A.ID�� DAre . . PRQIFCT YeA1TT43E1!KODIIOVAN rrar�IY1;mil+c DEPUTY MECTONOFTRINSPORTATON RCE Nn•2326 SHEET a OF 25 71 924 7T ' G Y�'A+ rF'S aJ '•J .+ 'N.iG'�?s3'�Q-a�.-.5� EACHSL-� :� '.i��T!!.1'i. : Y.RY: r'Sj::.rL' '+•.., .':.F�.. � .. i�-. -_ ._,: T.�.r.:,.. O.n,.:.., sC,.�.hecs.rr <:v: - r_��siK• 'Nr. .r•r .;I '.°.:_•_ _�}. ,y,� b- _ ::✓c.ff,s.°?a*.d+tie':.,!"��.,�Lt.... � .:a ..Y,f'; :,,_--y �.. ..._ . -4�,T+�;�."'fl' ,,r} .v- ...„�. a �,. ,_ �''= s•s rh,� r� 3r1r' _ 2.r�i It ,7s�!` _ _ �.;r `•z�r• _ � _ LF :r A�"� ems~ v - •c, a�• _ rrz ryEe�: i-:. L" 5,c°.3"r i' -', 'p. `.','..5a - - _ ilif;'� - i{ ;SK �*;t�.ra`:2' �it ..1 '+Y •-m:. rax.¢ 'r_Y ,a r -r:.:.G ��yq ..' .- :�e ': ...�:'� ... :-, � :f -" .. :E..y',:. S_ -•••.� .,,a'• .•{� _ •!' J �.::x :.r'u:^Y� .�v •, l.,a�r.E6 -t:z.., /�`, ?.F- - .e.r. R. :k%:: -ftb. ,:La' .r.-�, �,7'Y' k 3�. L.:�., ,.-r �'�"13'sStr 4��' sr'e'• ''.,tw-, S���'�Sa. ?r n', - ��_.s�- - -- �a�Z !i.1i.; _ '3 F e r .€ r` �����i`„� $_ •s ':;� WN .. •�- _ � G'r. '� _ � - _ rs._��_ __ 5..,___ ,ma's...,'....•.. _ _,L��1.Ja. :+e._.,_r..�r -r-:.. �- -r,,:1r;-.. .. ..- _'P^"^ :. •-s :r-.: _ ..•1._.-,....•. °_' -,r-`?.`�'yt",1z3�..-�..r-•r- - �,- .�,,.x .- sti_t. .. - .-.. _ .Ar rF ...5:.L +._.� � .+ ... .s•,{t:..sf,t,s s,.. ., ..- .,_. a ..., -^-_ i..a 4. :. ..r � ._4r .-p 35��� - S.•-.S•1... ..,:>_. ,.rR„ 'c�' .- J.- a. ':r.. .. _ J .. =� .- .t. ,r.. .. .... - -- -t y °F, rC • 'v - '9 4.'1�A �<� 3.-a rr4•. -r Y 4: .l .1.: . - t. S. r�Y - h.:rr,d >i. ?. y=', ':�,. '+CS`wF •4- ,��5-Y tyti:.:;.ti%<;: • r ..JJ :•.P.Y '� �. .• _ .,JiZ .:..,:[:•A•l:,}t•.':'Y.:'PS- ''.tlf. � _ '/�r,IGb a 7L-._ 'P� �•�7i �.-.< >�f'i• 'aR- �� 1 -;",1 --f nu a,,,: ::t'���.P'�_ :<�•. ..��� ::\ •��- '�."'_.. -,s•. Y4 f t d«a t5s 7* ,. _ r u.£ x.v ti a _. .,...erg '�:.::<^ r1. f. „•d <„ -.. ;• P d.'-;:..J /y J-- s:Sd. rn�z'rt�.. •,..'Yyyf Crt'. _ty;;�kai �.. - . .,....., r,.riCJ. �. =,?y�^?-.�r - •Y.... .r-^. : :a 1.A•,r; a, -f�-v" '=?�'.,'�'.�x. - .•�-Y «7.,1� >tJ'... :sd. :sr}..f. ..� a�, `t, h .La x,: _ R:iF r +�. :., ..:G:•1YL�,...r,.u �r ^: , - a:d, a� s 7 .... ..] ,�•- -Y•. .. .v ees -t 1 -.✓, �r...�:e•` � {� J i 1 - - �� -1 k .f qq'at.,s 3 -✓4'.=1 ..n .tt. :r. . }.,.�,.:..��.,, i. "' N.� , { .}: x�r i.... ., ...F,rt�:•EL`..,f F. •� 'K,-i-- '�{ w '�•' J.. -. .- 1'_ . .y.A,:....:.., - f•�t�ynNT", i� ��+vi.Yiyy�[��� �! y{ :!� �� .P S`iv:1iL'% 4 Y� !f'::F•. , :: t , .. _4T'>r ,a1.. _ : .. •Y'.3 i n..,.._,.._ .. .., �,I>•..t'--..... .-ram L .. •..•. .. ., .: ., -.7;- I "L'.`-rt•.<`='> ....i-r ... .< _. ..:. ..:.. ..r"S.. .--.... ..._. ,., v a Ft 4, F:+F4•- '3 "� t7€F-'31] tlr. .,._. .,.t,,.f n«--hli- - yy .. _)�`''" :: 'jT.-: �y. .;!•' : ff+-•r.. .. v.t .R.:.1, .-,:� � �.... .. _ .. 4 \ b..r-<. •:..:. I- G `' R 4.. �- F ,t. Y.. ...+�t* S•' �`` � r.F!'- dl 1- ♦�d�.�,. � I.N I - r,•7. 1 1 f+S • : A ,:.1:_.....- : t _ �• .;fit': .. 'P-:. - , ... :� i'. :,�.:`_ ::-'::-' •..-v'SeJ.'� f Y• R{ - . - "L• k`ra : .r> ,[� ,{� � 'r:•.•7,,,. {'_.` _;t.: � g- ^r�'. €�..Air3.... 3;•4:t>'�.. ..r.•' -..i: '�-1-�r ••° :a t fir.• .•.;'S:i. t.- - .;.� ...>,_ ,!.. - ;✓t?a•. :ar .. ^ r z(,. _ „1,: .rX _'.'f' :.1 tee. ,'.=y?. •y'y� .�•ra'+ _. , .. s, r._ a r k ., - ft.. _ (, :,r.:- p,. ! A`ai. _ r1. f .,C.,1© "r y. :h •3.. tr' z,fi;5 {- i f,) . > J ..r.. ?'•' _�'b .. .r .yr .-a,. �a. '$'-• ! .xaa.3.�.r -.,,,:sr�, -r4v.,,;t•:,,_ 1 r 2 t _zL .' t a. ._i- " - .as' '. 4.. .... �.. � >aaE"31�. :J„ `. � .�... :..:;: .�i'1..Kr"♦`iF l i� ,}r`F.r,,t '}S•F Jz" .�! F.23`•Y�A� }•,wa - R,y _ >9 • .,:` f. st FA'.72. <.•'•.�.Jrr. 1':•�i'�:•a is .:JvLa Sl - c,c •'r.•... .,r'� i .''aF��. "w-_ ,T`il'a r. t: r r [.�..art •P' � G-. g on- -. .4r ...-. �4<:>r• -�'.�-.r. ,• ._. lk--r F ti,. ::.. -' _ •. -` ! '.' ',y'•.L __F^u'�.: r{t'Y s.••.e .,;,I� J L.>..e Y3-. .. _ - < -':' ag5 rt: - r. r 5 t.. i��f�7:.� x• - , �-:` V ."�- w : +es ti:.a -a:::{ i•[�r,h " :a„< ,, }. a~' ':{`4 "tLr rl y .;1'S•'(.-f-r`Jn •: i!-(r�., s•-G. 3' FT.:•�. ..'' y F . { b,. a �''�w•,y a iat`+ 1 tiS ( r^ . ' i CONSTRUCTION NOTES ;[ 5 a_•p1 H4 _ ; r �r.P S.Yt] .L.F;. _ s r s J r T y •'' ...•1 - >Z.' ,rp f.4:s ,�}) ��K 4 .fe r .S. _.l i _.l:a >;. lam. ,4. .yr'r fir.. .A....\.. ':n s S5 S:' J, sR, {>F .,J .8-,-.' { -{. �. ,•Fa:y}'P ..-.t)t'I i:S. s: 4. 1 .PNWECTINAACE:.tas.t...xsee. Yr;ra1.77, .. ;AL< 'r^'. c.,t,/ �,. yut;,t:s. :7- .., :.e: 3. e...[:1Jy^•`?i.,.q"F'i-,V`i':'.r•d:'�i:.t..+.. - f: .. -iari•7 i{t'{• s 0... ds•- . Lar.1`"� �'6's tl-t. ;.:rJ•'�,. t .t�s.., .',x n':c'ti�i l'•.. ti- ]:�, -�' .;�.' . . r. '� :, Q uuAc.ov�DIS•Ae.a-3 .,s ir:'a. ?a'tss ? 1 �' + {`tail'. ><r~:?',iCL:�.>.F as .:'.. F .sT. -y A,•p s :<l,v•,,.-..i..,,,,, ^., ,�as>.z:a,,ry� �':,i. �}a, _ :�._:r.•.•' '�'h,..rr..-.rr!an . :. .. .. I �' �"����'.: 3-� `� �T <-,s ?1i �ti.'.{1*�1:71 OONSIRULTCATCN B_ASNIAIPFR RCFCO SN DRIS':g7'd}Cfi1-0D A•.p"�'r- ..-,J'...•:: .dyy,.v.,..-! y:' +e,:q:::r.,t'31J"<irrs:._r. 1::' .J :- - :x.; % x::,s, �S"-.s'S a'r. nt3 't - - [N`;?':;.,b..-v,✓'G: t r' 'tT, J,i-..� y. •Y•L. Jv PMJF-?..l'SY._s 4.'e :.fit'. '1 r �; „.a '. 3 ',ixa-r IS RFYQhASEClI0N3CFSHE 17�T0 EE Ad477CRED PLANTAIN 3F1 iLYCLFJ.RFJY.E FRC`M YCES CF C67CR?aS:N i T -r.fy. t. .",�.•}_"-.;,4, ,, -.. r Ll H N$iRO"T7RAPaao uEAR CIIkCEi 'w TN . ID __ O CCSSrNU,:TADO'JN�P�PFIEAUYDLEPER CALTilA45510.1'IAq ND.DE9 INSTALLS LOPE AROTECRON LIGHT Nt_i[li FAr4N3 . f G, !%TA.LNIN RCP CLASS ID IJEIOIMN. ttI STDIiAN To.Mill No,Ail: .-S V -�t it.r•T S ,s'r`:;,,' i, `>•`. NyO :® INSTkl11%TONROCK SLOPE RIOTECTgNRIFT BY 12 D SST .3A IYPAO%.4B (E)ACT[FJJOICI TO BE FIFIA[1 MY JIE01 qiT CONST.BEFORERDWYCONST, to fsY-__ �8 TOP KW IlNT.G teaatv..+.w IlF41F- ~�'� p_ t! Va I 1,YIN. I ,R[wOFEUR OF FARSYGYAAVEL lif ]R SFT tsT 47R c sT NYI ---- Mr.YJ51A __ ____._- j STATION 54+90.6 1 _ m - uai mrT -go No F CRAINAGE fAe1kE11r Vl N1oM VAIeEBAMY trR,o,aR f I FA510w letOlalD� OEVM VAPoESFROk aATO N'T WBTMG GROONG _ rMIFS� 1r�' . �•.i :.."F'.}', - We1Fl Lock O AEss ON NOI W61EF t _ . - ;%� a r .• - kl- s J1 ..v•,.r, ,n�s,e'.. _ _ - SECTION&S faRTX 11UFEIOIDAL CYNiNEL .. SECTION_AA cAllsles:Nxo.1 WD pMVIrwNO.sap - REVISIONS DESIGN SECTION RIVERSIDE COUNTY TRANSPORTATION DEPARTMENT PROJECT REFFRENCE •yy Ai:CAN]V APPROVED Or. WO.HD ATrO]Sa . .. DEEIREO BY: p(Ja:R a1R"'••, _ DATE Af CAM Emrs MISSION TRAIL TUe.l�o.� ale auwier. s = '� _ _ . DATE P.YJSAfST Wplae 10'Ciii /� pp CROSS ORAI["AGE CHECKED BY. _ M a r,a"-`W I _ec:,+%!'i�...,-. y��r._ STA 54,908 CAD FILFJ'lAYE C:\N15TRL.DGN RROJECT KOGNOVAN BfJprP9 OEOR3EAJONNSON DATE f arlilrAOEfC ,< CIYt�aO` DEPUTf DpiECTOR OF TRANSPORTATION RCE Hn 43334 SHEET i OF 15 N t 9Jza s?!' �r y ,';1':, r .:.V'y' , 5..•[`i J d. `',. .•r'� _ _ �,,... _tr. .'.'h: .5.. ,,. w1a • z`tF ate' s��,: ,.a :�,• � r. •a:,,,♦ ,..t,.:3 ii: _ rir,.. .u - -- i'. , t .� J', ,.4'. -'•'4. 3's a' ..} 'IS''`sTJ":�A-s -. M. .f ..�;•ik.. 'i=.g _ � T:s �Wtrts la•. •,iY ,:�-.-i< �.�s 4 2 � rig, `rnt' R7jE.>.F _ -l" fs�,•.C?] ,.•'{[, 2. : .,r•.7y S_ `F•..43. xgTt.S:�+;-a(�� -T-t- c�•, + YT qFa : ••4ti'Y' ;tars x' ' 4:A•rd<-' .. 5.3. . c S'- J. �'Sti'4•`%. r{.4.'�(':._':M' - ,I .4 .as• a>,=..a..l." A.:r_a ��.y.s'v::w,� :.T•.. �Y] :�•-• -�>`<fs. ,•�,�'- •,3�A r.4 �-< »»:,r .a�i. <�.` ,,.cam: r A. .c -� :-,-si .Fa.�� .'� .�':�i•sL�•.4=c",F'�"; 3.g�: , t�t l:,iah`•.,.r . i. •L ^ rrf ,.. T r 4 _ ..... ..:' .. ..., y... .. , ,...,.:_X,. .....9„', _ - _ ... .....-,-d :k(f•th F .� .. ;a` AS�Yf.# '>1 a"{ ✓G..: ,N.�t_i•�.I(.. i,7. ,... a,: -.• �.. t:.;,.-.. :'„ •....`-�< :. .: ,a ^.•_. _ ... t •�r, � `a....+1:. #. - �y3.'�,fG:Tr�..,._ l,,,.:f �:2� ��`�.�.r.-r.-- - �:�, _ _ � �.ri �' ,7r'YJ �. .rt. -il,.hl _tr y. �. _ r"',., "c:: .ri - - �s�'.X �. n^Y ���A�� „i.�.r yr>, 7 a•r xL+ �'i'�,T :)+ "'S. �.r�+t. s'"a�'.•(y+'F: 3:'k4': - ♦4K- a - <5 s }��. - �. -gC} `ir � Vy ,;;,!' :..�' _ 4. _��3�.�Aa �`�R"�_-P "v,rj.s:'.. :N=:r .1Y �R: fT:' - -•�'-. � : �� •'-TLR� ��'lf�s..- _ J�t�� �, fA J " ,,; .s�-t - �l _ s,�3C !- r'� :y.liJ �,i�:� _ TN�' r�`:7��- �%•� :Hs t -,�- ♦ -'T' •` fc r� �ii-i6 e _ F 1:'{<.Y�T�� - - 3 Si�-1� .%F �i.�l:•.. �'�. .F•1°Y' �R6_ .:'� t•, a'.F.,. i'.Sa l4ys 1 "`t.Y `1 �.. .-141:r F< - .:W .'T:'•T- q 5s. ,.'},{31,. ,1..4 .I.7X tl' E- A _. �`' .=tsns-... -n...�: e ,vx�}E:�' �•�"73 s";_,7ii�t•>_si.�.. F � .,- _,-._ •.a. , MISSION TRAIL APARTMENTS RCFCD & WCD DRAINAGE PLAN (FOR REFERENCE ONLY) RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT INDEX SHEET NC.- GENERAL NOTES TITLE SHEET 1 1. THE CONTRACTOR SHALL CONSTRUCT THE FLOOD CONTROL IMPROVEMENTS r PLAN & PROFILE 2-4 � Spy SHOWN ON THE DRAWINGS IN CONFORMANCE WITH THE REQUIREMENTS OF = ppNE THE RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT'S DETAILS 5 M_O.U. STANDARD SPECIFICATIONS DATED JUNE 24, 2008, AND RCFC&WCD STANDARD MANUAL, a PLEASE REFER TO THE "PUBLICATIONS AND RECORDS' PAGE FOUND ON THE DISTRICT'S WEBSITE. 2. CONTACT THE ENCROACHMENT PERMIT ENGINEER AT 951-955-1266 IF AN ENCROACHMENT PERMIT R.C.F.C. & W.C.D. STANDARD DRAWINGS IS REQUIRED FROM RIVERSIDE COUNTY FLOOD CONTROL. AFTER THE PERMIT IS ISSUED, THE DISTRICT MUST BE NOTIFIED ONE WEEK PRIOR TO CONSTRUCTION. WfE$}TDRE C4NyDN ROAD CB 100 CATCH BASIN No. 1 3. CONTACT CONSTRUCTION MANAGEMENT AT 951-955-1288 IF CONSTRUCTION INSPECTION WILL BE PERFORMED BY RIVERSIDE COUNTY FLOOD CONTROL. THE DISTRICT MUST BE NOTIFIED TWENTY CB 101 CATCH BASIN No. 4 LAKE ELSINORE ' HEMLOCK STREET DAYS (20) PRIOR TO CONSTRUCTION. CB 103 MANHOLE FRAME AND COVER 4. ALL STATIONING REFERS TO CENTERLINE OF CONSTRUCTION UNLESS OTHERWISE NOTED. CB 104 CATCH BASIN GRATE Argt/Ca�Ro'� PROJECT 5. STATIONING FOR LATERALS AND CONNECTOR PIPE REFER TO THE CENTERLINE INTERSECTION CB 105 DETAIL OF CATCH BASIN OPENING & INSTALLATION STATIONS. DETAILS/REMOVABLE PROTECTION BAR FOR C.B. I % 6_ FORTY-EIGHT HOURS BEFORE EXCAVATION, CALL UNDERGROUND SERVICE ALERT 1-800-227-2600. C8 106 CATCH BASIN REINFORCEMENT i { dpr 7. ALL ELEVATIONS SHOWN ARE IN FEET AND DECIMALS THEREOF BASED ON THE NORTH AMERICAN CB 109 SPECIAL CONNECTIONS TO CATCH BASIN t Oil qy VERTICAL DATUM (NAVD88). LD 201 LOCAL DEPRESSION NO. 2 LIVE ST. 8. ALL COORDINATES ARE SHOWN IN FEET AND DECIMALS THEREOF BASED ON THE NORTH AMERICAN LD 202 LOCAL DEPRESSION NO. 3 Q n Q DATUM (NAD83), CALIFORNIA COORDINATE SYSTEM (CCS), ZONE 6 AND EPOCH JS 228 JUNCTION STRUCTURE N0. 3 9. ALL CROSS SECTIONS ARE TAKEN LOOKING DOWNSTREAM. MH 252 MANHOLE NO. 2 10. ELEVATIONS OF UTILITIES ARE APPROXIMATE UNLESS OTHERWISE NOTED. 3 LEMON S1REEf MH 253 MANHOLE NO. 3 11. UNLESS OTHERWISE SPECIFIED, MINIMUM STREET RECONSTRUCTION SHALL BE 4" TYPE "B" HOT MIX MH 254 MANHOLE NO. 4 ASPHAULT OVER 6" CLASS 2 AGGREGATE BASE OR AS SPECIFIED BY THE ENGINEER. MH 256 MANHOLE FRAME AND COVER (PRESSURE) 12. OPENINGS RESULTING FROM THE CUTTING OR PARTIAL REMOVAL OF EXISTING CULVERTS, PIPES MH 258 MANHOLE SHAFT (PRESSURE) V1CiNllY MAP OR SIMILAR STRUCTURES TO BE ABANDONED SHALL BE SEALED WITH 6" OF CLASS "B" CONCRETE. NOT TO SCALE 13. PIPE CONNECTED TO THE MAINLINE PIPE SHALL CONFORM TO JUNCTION STRUCTURE NO. 4 (JS 229) CALTRANS STANDARDS UNLESS OTHERWISE NOTED. 14. PIPE BEDDING SHALL CONFORM TO RCFC&WCD STD. DWG. NO. M815 EXCEPT FOR COVER <2 FEET. D80 CAST-IN-PLACE REINFORCED CONCRETE SINGLE BOX CULVERT FOR COVER <2 FEET, CONCRETE SLURRY (2000 PSI) SHALL BE USED. THE ENTIRE TRENCH SHALL D90 PIPE CULVERT HEADWALLS, ENDWALLS, AND WARPED WINGWALLS I 1 BE SLURRY EXTENDING 4 INCHES MINIMUM AND 12 INCHES MAXIMUM ABOVE THE TOP OF PIPE. -� D919 CAST-IN-PLACE REINFORCED CONCRETE JUNCTION STRUCTURE 15. BH--1 INDICATES SOIL BORING LOCATIONS BASED ON THE SOILS REPORT DATED DECEMBER 20, 2016 D77B BICYCLE PROOF GRATE DETAILS \ ` LOCATIONS SHOWN ARE APPROXIMATE. ,t 16. "V" IS THE DEPTH OF CATCH BASINS MEASURED FROM THE TOP OF CURB TO INVERT OF CONNECTOR PIPE. 1 1 17. CATCH BASINS SHALL BE LOCATED SO THAT LOCAL DEPRESSION SHALL BEGIN AT EXISTING CURB t` RETURN JOINT, UNLESS SPECIFIED. 18. ALL CURBS, GUTTERS, SIDEWALKS, DRIVEWAYS AND OTHER EXISTING IMPROVEMENTS TO BE RECONSTRUCTED IN KIND AND AT THE SAME ELEVATION AND LOCATION AS THE EXISTING IMPROVEMENTS UNLESS OTHERWISE NOTED. ;�,, 19. STANDARD DRAWINGS CALLED FOR ON THE PLAN AND PROFILE SHALL CONFORM TO DISTRICT ; STANDARD DRAWINGS UNLESS NOTED OTHERWISE `N 20. THE CONTRACTOR IS REQUIRED TO CALL ALL UTILITY AGENCIES REGARDING TEMPORARY SHORING AND SUPPORT REQUIREMENTS FOR THE VARIOUS UTILITY LINES SHOWN ON THESE PLANS. ,y,',, 21. DURING ROUGH GRADING OPERATIONS AND PRIOR TO CONSTRUCTION OF PERMANENT DRAINAGE ` STRUCTURES, TEMPORARY DRAINAGE CONTROL SHOULD BE PROVIDED TO PREVENT PONDING WATER AND DAMAGE TO ADJACENT PROPERTIES. ,` 11 / I''• 22. APPROVAL OF THESE PLANS BY THE RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION %,. DISTRICT DOES NOT RELIEVE THE DEVELOPER'S ENGINEER OF RESPONSIBILITY FOR THE ENGINEERING DESIGN. IF FIELD CHANGES ARE REQUIRED, IT WILL BE THE RESPONSIBILITY OF THE DESIGN ENGINEER TO MAKE THE NECESSARY CORRECTIONS. '., 23. THE CONTRACTOR OR DEVELOPER SHALL SECURE ALL REQUIRED ENCROACHMENT AND/OR STATE AND FEDERAL REGULATORY PERMITS PRIOR TO THE COMMENCEMENT OF ANY WORK. 24. THE CONCRETE COATING ON THE INSIDE OF ALL REINFORCED CONCRETE PIPES MUST BE INCREASED TO 1�\ PROVIDE A MINIMUM OF 1-1/2 INCHES OVER THE REINFORCING AND INCREASED TO A MINIMUM OF 3-1/2 A` INCHES OVER REINFORCING FOR BOX CULVERT, WHEN DESIGN VELOCITIES EXCEED 20 FEET PER SECOND. THE CONCRETE DESIGN STRENGTH IN THESE REACHES SHALL BE F'C=5,000 PSI FOR VELOCITIES ' \ EXCEEDING 20 FEET PER SECOND AND F'C=6,000 PSI FOR VELOCITIES EXCEEDING 30 FEET PER SECOND. INDEX MAP N , \ 25. CONSTRUCTION JOINTS FOR CALTRANS STANDARD REINFORCED CONCRETE BOX SHALL BE PLACED ACCORDING TO RCFC&WCD STANDARD DRAWING NO. BOX 401. LEGEND /� ----- - Don't Dig Until You Coll U.S.A. Toll Free B0 r P�E L I�v/�T I ll®�II4 A�Y t- 0-227-2b00 2 I of dr ity lie r "ORty Imes. 0on1 e•sl"PI ELEVATIONS PER PLAN ARE NAVD 88. SUBJECT TO REVISION , al ss•wces. +wo vawm oA.c"srola ro"dP SUBTRACT 2.45 TO CONVERT TO NGVD 29 BENCH MARK REVISIONS ENGINEER RCFC/ DESIGNED BY RIVERSIDE COJNTY FLOOD CONTROL CITY OF LAKE ELSINORE PROJECT NO. KA wrLsnry MlKAM! M. AND MISSION TRAIL APARTMENTS 3-0-0053 B.M, NO- Z11958 JRANN gy, �y��y7 a1 M' r WATER CONSERVATION DISTRICT THESE PLANS HAVE BEEN REVIEW FOR CauPUANCE FD. NAIL W/RCFC WCD TAG, FLUSH RT C O R F-ORATION �+ WTH THE APPROPRIATE CCND.TIONS OF DEVELOPMENT DRAVANG N0. KAM 9 CORPORATE PARK,SURE 100 T:949-679-OD90 RECO AMEfSEO FOR APPROVAL BY: APPROVED Bl! AND/OR CITY AND SATE LAWS,ANO A PEALCT CAN BE STORM DRAIN LOCATED NE'LY I THE INTERSECTION ISSVE�. DATE DRAWN: No.1988/ I OF VIEW CREST DRIVE AND TAMERON NA. IRVINE,CA 92606 F.949—fi79-009T � L""no���s ,r 3-214 ELEV 125D.350(NAVD88) OCTOSER 2017 ,ff _I PLANNING ENGINEER GENERAL MANAGER—CHIEF ENGINEER SHEET NO. 1jmm-w7wL,0N DATESCO"M. CA-:— DALE: °A E` TITLE SHEET REF. DESRPTKIN APPR. DATE DATE SCE Q 3920 1 OF 5 10+00 11+00 12+00_ _ 13+00 10+00 NOTE: CONTRACTOR SHALL PROTECT IN PLACE ALL I - UTILITIES CROSSING OR PARALLELING THE i STORM.,DRAIN UNLESS OTHERWISE NOTED i II I N 2 1275 III_ U IiII 2 orn 1275 o PROP- FISHED RDE z+ + OVER I STORM RAIN = ¢z o � Mt 9 DRIVE J127D 1270 STORM ••�CJaR B & CURB DRAIN GJTTER 12 12 1266.00 PARKING 12651265 IHGL100 I STA. I i 78 10+7 .97 RCP LET I I 8 II I j 30' EASEMENT 126059 V 15' 15' WSE=7259.871260 1260 I RCP UTLE7 I 78' RCP I S=0.006 i , r 1259.89 w 260.64 ELEV=1251 32 1257.95 1258.32 1258.35 '1259.3 DO1259. 5 ? o 1255 N .0 A51 0R=fi2 1255 I I HYDRAULIC I ATA HYDRAULIC DATA ! + + HYDRAULIC DATA i Ln o RICK ESS=4.3' ! D10Q_ 419.2 CFSco o a D100= 411.4 CFS n i_ Q100� 411;4 CtS ! r SECTION AT STA. 1 2+00 1250 VIDo= 14.5 S V10D= 13.2 FPSI ¢ 15 V1001 N v> 13.6 FPS 1250 i I ! !r7 4.00 LF 0 0' 18" RCP ~ 57.16 LF 78' P I 155.56 L 78 RCP I 87.17 LF 78" RCP !¢ CLASS IV 1245 ! 1050D I 1 50D 1050D 1245 I� MAINTAINED B RCFC & WCD ! LINE B ' e I I I ! el I i I I i I 1240 I PROFILE ,zoo _ L PROFILE i I I i ELEVATIONS PER PLAN ARE NAVD 88. i SUBTRACT 2.45 TO CONVERT TO NGVD 29 - - - -- ---STA.- i•Do-�T.44-_GNE__A'_., ----.-._._1S;_•,----- - - ----_-_- - B€GI^rLINE A .. __ ------- --------- - - - - - ...-..- ._. --------------- N= 1 040GB4��-_. _ -- -------- ------ - - - ---•- --- -- •. -_- z $ _ _ L1N�'A' - f -�- - - - - - - -r i \ PRIVATELY MAINTAINED SPILLWAY AND WEIR Op N 3711'34" E - �•� PER SEPARATE GRADING PLAN 2 N - �� 12 4 I + f I to w _ _ ��'� NOTES ' W!2U C5 w� i 78" STO M D y ^a te I \ �P O CONSTRUCT HEADWALL AND WINGWALLS PER CAL TRANS STD. D90 d- ANO DETAIL ON SKEET 5 CONSTRUCT MANHOLE NO. 2 PER STO MH252: L=5.5'• D1=D2=78" CONSTRUCT MANHOLE N0. 2 PER STD MH252: L=5.5', D7=D2=78" �: rr O4 INSTALL 1/2 TON RIP-RAP TO A DEPTH OF 4.3' CONSTRUCT 18" CLASS IV RCP; L=4.00' N74.53'37"'N �r fA1 CURVE DATA a CURVE DATA Dori t Dig...Un UI You Co A U.S.A. Toll Free v p= 3607'39" L--'p= OT55'13" 1-800-227-2600 R = 131.00' R a 22.50' for the Ieeollon PLAN \ - T = 45.27' T 1.56' of burietl �terty line°. / L = 87.i 7' L = 3.11' Don't tl�atiPe 20 0 20' `� BC = STA. 12+33.48 SC = STA. 10+04.13 •t°'ur°Ipe9 \�. ' EC = STA. 13+20.65 EC = STA. 10+07.24 ELEVATIONS PER PLAN ARE NAVD 88. PI = N 2180619.58 PI - N 2180451,62 SUBTRACT 2.45 TO CONVERT TO NGVD 29 WID.-.na.c oAn Dcwc VV as \ E 6244108.17 E 6243987.32 oE9CNED BY: BENCH MARK � REVISIONS ENGINEER RCFC/ CITY OF LAKE ELSINORE RIVERSIDE COUNTY FLOOD CONTROL PROJECT NO. B.M. No. z11958 KAM W I L S O N M I KA M I pR01L55f AND o M.OftAWT BY: Q F THESE PLAINS HAVE DEEN RENEW FOR COMPLIANCE WATER CONSERVATION D,STRICT MISSION TRAIL APARTMENTS 3-0-0053 9 CORPORATE PARK,SUITE 100 T.949-Ti79-0090 BSUEOCORPORATION I RTH--1E APPROPRIA-z COND TIONS OF DEY_LOPM" DRAWING NO. FD. NAIL W/RCFC WCD TAG, FLUSH KAM V AND/OR art AND STATE LAWS,AVD A PERMIT CAN BE RECOMMENDED FOR APPROVAL BY: r: STORM DRAIN LINE A APPAM s. LOCATED RELY THE INTERSECTION PATE DaawN: Ma.e9ee4 9 3-2'I 4 OF VIEW CREST DRIVE AND TAMERON WAY IRVINE,CA 92606 F:949-679-0091 ELEV. i520.350(NAVD SB) OCTOBER 2017 s+� °t�l� DATE: STA 10+11,44 TO STA. 13+20.65 SHEET NO. M• I Gt\ • I - - _ - DATE: CAM `Z OF 5 RICE N0. 4986I EXP.9-3D-18 REF. DESCRIPTION APPR, DATE APPP DATE RCE 43920- 14+00 15+00 16+00 17+00 _ 18+00 ---• . . --------- I f i NOTE: CONTRACTOR SHALL PROTECT IN PLACE ALL 1 T UTILITIES CROSSING OR PARAL ELING THE STORM D6N UNLESS OTHERVgSE NOTED 5 I 6 -- I I NINo I I + POP. FINISHED RAD�- + OVER STORM RAIN 1275 j ;PRO FI ISHE(D GRADE ; o j + I I �`r Q 1275 I I =d z � I � � « r d I ! WS =1274.0 w ! I r" HGLI DO ! I Z: JJ 1270 ...! �.�.�...�• 1270 = I I .H L10 1_ I 1 M16 aJa STA: 16 1a.D� _QoSs M Jow 1265 S j 1255 ST 14+ 1 54" RCP INLET 1 I fi i1266.2 1 RC INLET EL V S=1263.47 I N 1263.51 I 12 3.40�INV S=0.00621261.71 =0 ! I N 1263.39 1i264. 264.31 W mw 260 I I =0:00 { ro l 1261.94 N I ! I 1 63.4 N i 1260 N m i N DO 1 9.89 { N N w r N + I up I a o ri 1255 N + I < d I �+ 0 1255 U I I m 9 + .m + In I I d o YDRAU IC DATA i �^ ; 4.00 LFI 1250 N 01 = 4 3.5 CFS d d 1. 1250 1 FPS i HYDRAULIC': DATA ; cL�ss IV Q100 410.9 CFS I Q1DD= 313.9 CFS Q1Dd= 205.0 CFS 0100=1 2050 CFS ; V10D= 13.4;FPS I VIDD= 1].1 FPS I VI = 10.4 F�'S V1DD= 10.4 FPS 1 q 1245 ¢ 1167.Q4 LF 78"i RCP 1 60:87 LF 78" RCP 54.70 72" RCP 171.59 LF 60I RCP i 51.11 LF 60" RCP LAT A- I 1 1245 1 1 DSaD I ; I PROFILE _ I MAINTAIN D R WCD I - i ELEVATIONS PER PLAN ARE NAVD 88. ! ! ! 1240 SUBTRACT 2.45 TO CONVERT TO NGVD 29 LINE A P 0 FI LQ j 1240 t DRIVE NOTES CURB flR RW I FL CURB Oj CONSTRUCT MANHOLE NO. 2 PER STD MH252; L-5.5% D1-D2=78" STA. 16+53.85 EC MATCH LINE 16' 14' 14' 16' O CONSTRUCT MANHOLE NO. 4 PER STD MH254: A=45'00'00", B=54" PARKING 3� 11 PARKING C=9.0', D1=78", D2=72', ELEV R=1261.73, ELEV S=1261.71 `.60' STORM DRAIN CONSTRUCT 18" CLASS IV RCP L=4.00 N27'28'17"E r /� .'� 1r :IN IRS O / q I 1 II I �! i'I 30' £MENT j d I ! 4 ! O4 CONSTRUCT MANHOLE NO. 4 PER STD MH254: A=45'00'00", B=54" l .' 1 + 8. 1: LINE } . ! i 15, 15' I' sTA. Oo.clb i T 'A 3' ! ! I I j 0 C=8.25', D1=72", D2=60% ELEV.R=1263.71, ELEV 5=1263-47 LLJ • �\Il I N ! II { r ! '' Ili I I O aw CONSTRUCT MANHOLE NO. 2 PER STD MH252; L=5.5', D1=D2-60" Z } `. .. `. • I7 " STO RA `M DRAIN 1 1 78' RCP 1 10, 0 10' J \, \ �� - -�•-=-r C; I ,�` - +S ;Ei S ET 4 I ! CONSTRUCT CB N0. 4 PER STD CB101, W=23.64' 7 GRATES), V=8.0' ' 3±I HE 1 I OMARKED "ONLY RAIN IN THE STORM DRAIN' WITH DAS Z - - •- -- 1 U ---------fi• --------- �- 1r J j ! I MANUFACTURING 3"x5 1/4" DURACAST STORM DRAIN MARKER; 'IMTH 1- ---- --- -- -- - 1< al 11 xl N MODULAR CONNECTOR PIPE SCREEN (MCPS)BID CLEAN OR APPROVED EQUAL SECTION AT STA. 14+00 A'-32" +MTN GRATE PER CAL TRANS STD. D77-B, TYPE 24-10S GRATE �Q 1 RI STE ARAYENGRAENGI PLAN P MISSION TRAIL _ w 1• !QQy484 r.�CITY BOUNDARY Z - - I t-54 ST iJt i - - - N 75'18'04 rE - - - - - - --_ -- 2 LI 2 H i I yc Ja \ p v a - 78 STORM DRAIN / 5\ °UD C `I.. z` -. • 1i \'` CV F i I' ! �Irl 1i U -I 0 6 • TCRM DRAT 30' .T'RM 4R H I°1 c�v Z I RSECTION _ X 1A-12A' SEE $HII 4 rr,,�� a - I SECTION S 15+54.1 tt1 1 I! o > eot +87.31 LINE 'A' I "' - - -ST4 ^I r I PLAN CD R 20' 0 20' C CURVE DATA (t CURVE DATA CURVE DATA = 58'44'36" u A= 35'33'49" r` = 45 00'00 + ,,i'- -- -- y Don't Di...Until YDtr Coll U.S-A.Toll Free = 4 s SfiA. -- 2.28 IE- fD - -`- _ _ _ __ e R = 45.00' R = 45.00' R S.OD' - -.- 1-800-227-2600 T - 25.33' T = 14.43' T = 35.34' -- j - to,the 1-ti- r L = 46.14' L = 27.93' L = 18.64' el b„riea __.-- - "tray r„es. BC = STA. 15+27.38 BC = STA. 16+25.92 BC = STA. 18+01.17 - Do,•t al:r.ot EC = STA. 15+73.52 EC = STA. 16+53.85 EC = STA. 18+36.52 V) - ��244359-14 WtOI eerNnes. ELEVATIONS PER PLAN ARE NAVO 88. PI - N 2180689.86 PI = N 2180778.19 PI - N 2180948.77 "i - - - T -- - - -- ---- ---- - - --- --- --- - -- -- - SUBTRACT 2.45 TO CONVERT TO NGVD 29 E 6244376.44 E 6244402.74 E 6244344.05 / Tq qft-0 O.Y9 K-"YOY O:C DESIGNED BY: BENCH NARK „ REVISIONS ENGINEER RCFC/ CITY OF LAKE ELSINORE RIVERSIDE COUNTY FLOOD CONTROL PROJECT NO. 11S W1LSC7f�f MIKAM! Q1IS5, AND MISSION TRAIL APARTMENTS 3-0-0053 B.M. N0. Z11958 KAM o u. WATER CONSERVATION DSTR�CT CRA r @- / F -SSE PLANS HAVE SEEN REVIEW FOR CpAPLIANCE L[7 R P L]RA 71[7 N AND THE A�FROPRIATE CONDITIONS OF DEVELOPMENT FD. NAIL W/RCFC WCD TAG, FLUSH KAM AND CITY AND STATE LAWS.AND A PERMIT CAN BE RECOMMENDED FOR A-'PROVAL BY: APPMIFf 6Y; STORM DRAIN LINE A DRAWING N0. LOCATED NETY OF THE INTERSECTION 9 CORPORATE PARK,SURE 100 T; 949-679-OC90 s Nu <4sEs a ISSUED. DATE DRA1N�: IRVINE,CA 926DB F:949-679-0091 3-214 Of NEW CREST DRIVE AND TAMERON WAY � �h niniu M ELEV: 1520.350(NAVD 88) OCTOBER 2017 DATE: STA 13+20.65 TO STA. 18+52.28 SHEET NO. SCOTTM.WIL N a r,AU A LL, T N _ - _, DATE: LATE: Z OF 5 RCE ND,49884 UP.9-30-18 REF. DESCRIPTION APPR, DATE APPR. DATE RCE L3420 J 1+00 ,0+00 10+00 10+00 NOTE: CONTR CTOR SHALL PROTECt IN PLACE ALL UTILITIE CROSSING OR PARALLELING THE 2 ? POP. FINISHED GRAD STORM RAIN UNLESS OTHE WISE NOTED r Or STORM DRAI ---- - � I 4o I N I f0 10 11 + so1275 PROP,. FINISHED GRADE o 0 1 o< n N m - -- 1275 --- --- - TOR n r < Ir3 N ¢ s N N N i H In to I ' I 1 0 FGLj00 1270 - - In W 1 7 . 10 �iGL 1270 I II I L I � I 1 I -- = 1. " 't0 � � I II II ; W'2 0 aL r 7N S,p ¢�N I 1265 1265 _ _ _ _ =I= T = = T t 1r,� - - -- -- - - - _ �5=0.0054)L - _ 30 RCP INLET w�i> 1366. 9- 1 65.43 T ?N J - - - Jrw - - EL E S=1263.00 T- 6 i 2 J W 1263. 5 1263.45 S,� =0. 0 0 �rw 1263.00 a n 1260 pesp rn m N m -"- 1260 - r <o m ao N m o+ .} m pN0 N N O oO 1255 ( ! O O O+ + O O 7 _ - 1255 N ¢ d w 44.50 LF 30" RCP w f N N 0 1000D I a o+ 28.1 LF HYDRAULIC DATA 5ioo o I I 1250 1250 WYDPAIII ICDATA 4 41.0 CFS __- H D AUL ! 101.8 CFS - - V,00- 8.4 FPS MA01 0 = 60.6 CFS! ��1 TAINE s.a FPS HYDRAULIC D T VtOp= 9.7 IFPS 50.9 LF 54" RCP j 0 = 114.5 C S 1245 I E ISTwG 93.00 LF 24" CP x 2 11100D _ - ^-_ - VtT0000= 7.2 FPS 1245 LAT 'A 2' MAIN INED BY �cFc'aE W D LAT 'A-2A' - - - LAT 'A-3' 124o PROFILE ! PROFILE PROFILE 1240 OR RA. L NE ` EE S EET 3 I I ELEVATIONS PER PLAN ARE NA VD 88. W ` SUBTRACT 2.45 TO CONVERT TO NGVD 29 1, • • •• I ' I -t , CB 2 T IBC MISSI N TRAIL IN ER&fCp ° I NOTES A STA. 6+1 .0p1 INE 'A Z' f CITY BO NDARY _ Bio w Clean STA. 0 T 'A 3' iN Oi CONSTRUCT CB NO. 1 PER STD CB10O, W=28', V=7.0' • AFwterraCompany I MARKED "ONLY RAIN IN THE STORM DRAIN" WITH DAS Z i MANUFACTURING 3%5 1/4" DURACAST STORM DRAIN MARKER; a O 54" STORM DRAIN `� I PATH MODULAR CONNECTOR PIPE SCREEN IBIC CLEAN OR APPROVED EQUAL 1 !!Ao 30' EASEMEN ttO ' I� O CONSTRUCT CS NO. 1 PER STD CB100, W=10% V=6.0' . MARKED "ONLY RAIN IN THE STORM DRAIN" WITH DAS EDT -- 30 fY+ MEN , MANUFACTURING 3%5 1/4" DURACAST STORM DRAIN MARKER; AdVanta 2S &BCD DRAIN I WITH MODULAR CONNECTOR PIPE SCREEN (MCPS)BID CLEAN OR APPROVED EQUAL MeebsOm4FW14pureDash ( __ DEDtCAT D ;T "II PRIyATE DRIVE i I, Regmre en W she CaeromN INTERSECTION \\ P3 State and Regional ware _ 6_ Boards STA. 15+54.16 LINE A _ CONSTRUCT TRANSITION STRUCTURE N0. 1 PER STD. T5301 AND t 100% sunless steel STA. 10+00.00 _ - - N 710048 1 (� PER DETAILS TONNSHEET 5TR s? tom".1 on uni:ng Dory i E I 3 t t pedo Modular design allamIttobe - �_� -cr. _` I O4 CONSTRUCT MANHOLE NO. 3 PER STD. MH253 j j S h adapted to any Pipe sloe and Dhow:m e1e0 inside"" CONSTRUCT JUNCT.ON STRUCTURE NO. 3, CASE 1 PER RCFC&VA]C STD. JS228 t r Round design „eh <"ail F w n 3 S uppun,.iro+tan&seaeral _ STA. 10+76.73 LAT 'A-2' 3<' hundred pounds or wet« _ �R END CONSTRUCTION i#}1' pressure For.-Min9 all � 78" STORM AIN ' N=4401940.71 I 1 otherder<et IR EC ON I E=6581169.96 LINE 'A' SEE SH -STA 10+ 6 LAT 2 { 0 - 130 STOR DRAIN ' I -------- Standard Sizes I 3 2 I F G P CURVE DATA CURVE DATA Pita Size Unit Height Leng(in.) (in.) th iec of(enter Assembly Width - - - - - CB - I = 14.55'51" Q= 14'47'44" e Qn.) In.l Don't Dig Until You Coll U.S.A. Toll Free 18 to n/a 2a R = 100.00' R = 70.00' 1-800-locown 00 24 24 6 30 I J PLAN L = 26.06' L = 91859' fa the locotion 30 30 12 36 m eur.a 36 36 to az I II 20, 0 20 EC = STA. 10+38.26 EC = STA. 10+26.44 utility lines. I Don, alsruDt 40 42 24 48 - v'IOI sardces. 48 48 30 60 - _ _ III I I I PI E 62440399.63 PI E 62444111.46 two aovzwc own e-t You ow IL. I I E G SIND BY: BENCH MARK DE �l REWSIONS ENGINEER RCFC/ CITY OF LAKE ELSINORE RIVERSIDE COUNTY FLOOD CONTROL PROJECT N0. KAM m WILSON Milli p t5:, AND MISSION TRAIL APARTMENTS B.M. NO. 211958 DRAWN D �.. THESE PUNS HAVE BEEN RENEW FOR COMPUANCE WATER CONSERVATION DiS7RICT W CORPORATION WITH THE 3-0-0054 APPROPRIATE CONDITIONS OF DEVELOPMENT /� ' n' DRAIMNG N0. FD. NAIL W/RCFC WCD TAG, FLUSH Ti X AND/OR CITY AND STATE LAWS,AND A PERMIT CAN BE RECOMMENDED FOR APPROVAL BY. APPROym Or. STORM DRAIN LAT A-L KAM 9 CORPORATE PARK,SUITE I00 T: 949-679-0090 a z IS LOCATED WILY OF THE INTERSECTION DATE DRAWN: '+0 49�a SUED. STA 10+08.58 TO STA. 10+76.73 3-214 OF NEW CREST DRIVE AND iAMERON WAY IRVINE,CA 92606 F:949-679-0091 fstcrvu e ' ELEV: 7520.750(NAVD 88) OCTOBER 2017 + �� DATE: STORM DRAIN LAT A-3' SHEET NO. IL cAa a u, I r w N_ cA E: 0A7Ei STA 10+07.84 TO STA. 10+35.97 4 OF 5 RCE N0.49884 EXP.9-30-18 REF. DESCRIPTION APPR. DATE APPR. DATE RCE 43920 PL 1261.5 TW 1261.5 Tw I H=3-0' 0� 9. 3.0' H-1.0' 9. 0 WA H GHi VARIES R SPILLWAY ELEVA1259. #4 BARS #4 BARS 2-9' 1 _-9.0' 3:5' 9.01 4.25' UPPER 029 Ew 02,C E F M -0' TO 13.0' 1 57 BOTTOM BASIN 12"T'YP. 1 58.25 FS 12 8.2 - - - - -- I'l 1254.5 1 FS 25 1/4 TON RIP-RAP 1265.5 FG DEPTH = 2.7 11 T RIH INV WAL 91 BASIN FLOOR=12!: SPILLWAY SECTION X-X SPILLWAY SECTION Y-Y INSTALL 1/2 TON RIP-RAP 112�54.5FG A 1254.5 FIG 4 1 1266.00 TW--to FS' 1255.5 1253.00 TF 4 H=13.0' 4 1256.5 17579 1 1258.5 t 5Iq IF 1259.5 �j 27 1259.5 1265.5 FG 1260.5 a" 4 1260.5 1260.5 oo 4EL=1258.25 1D, - a:=1259415 .• 1260.5 ALL �yl y44 9;J­0"* L-YAEUES- 1259.5 1IFRO 259.5 6.01 TO 13.01 '.'11257.95 1258.5 / 4 1258.5 :COP F C> 1257.5 L H 6 1257.5 1257 F /7- FOR W L' INF CEM T D T ICK SS SEE X� N 90 BASIN INLET HEADWALL AND WINGWALL DETAILS BASIN OUTLET WEIR DETAILS SCALE- 1"=5' SCALE: 1"=5' It sHAFr CONCRETE AND REINFORCEMENT RIM ELEVATION PLACEMENT PER CALTRANS DBO PER I PLAN MANHOLE SHAFF PER (5'X5' RCB) ! A �FC&WCD STD. 253 T+4' PER RrFrWrn 1 T­47 P R CFC&WCD T+4" f RCTF+C&4�W CPDE R RCFC&WCD TS301 301STANDARD TS301 STANDARD T5301 c D T+,V' PER o RCFC INVERT PER S PER PLAN 6.5* r, U') S PER PLAN TRANSITION PER RCFC&wC is'-o PLAN� T REFER TO CALTRANS DBO FOR MANHOLE SHAFT PERINVERT PER STANDARD TS301 CONCRETE AND REINFORC ENT CFC&WC T-STD. 253 PLAN T+4!' PER RCFC&WCD SECTION Q GROUT FILLET PER T 4 PER RCFC&WCD T+4!* PER RCFC&WC] REFER TO RCFC&WCO STD TS301 rANDARO TS301 STANDARD TS301 SECTION A-A A CALTRANS 91 A FOR PIPE TO RCB JOIN 14� CONCRETE AND REINFORCEMENT 6.5' C SD CL F X"5�MENT PERAL A L CONCRETE AND REINFORCEMENT tn RCB) LA MEN PE CALTRANS D80 w I- VARIES -1 T+4r PER (5'X5. RCB) Of i. RCFC&WCD TS301 .6 VARI 8.67 TO 65 TRANSITION &0 NS,�10 4!' PER RCFC&WCD T FILLET PERcn t GROUT w q PER RCFC lit a:04 T+4�!' STANDARD TS301 T+4!' PER STANDARD TS301 1CALTRANS D91D PIPE THICKNESS(T) WCQT ROUT FILLET PER RCFC&WCD TS301 *.1 Don't Dig Until You Colt V.S.A. Toll Free JUNCTION STRUCTURE NO. 3 CALT NS D9 I B JUNCTION STRUCTURE NO. 3 JUNCTION STRUCTURE NO- 3 PER _ PER RCFC&WCCI STD. JS288 PER RCFc&wCD siu. JS228 my'a -tr E aCFCiiwCD STD. J5228 1-800-227-2500 CASE 1 B c D VARIES CASE 1 the 16c,ti� CASE 1 f GROUT FILLET PER c 9t.ty IF— TRANSITION STRUCTURE SECTION B-13 CALTRANS D918 SECTION Q Q o99 "T" REFER TO RCFC&WCO STD IS301 w - ­- ELEVATIONS PER PLAN ARE NAVD 88, DOUBLE PIPE TO PIPE DETAIL CONSTRUCT SINGLE RCB PER CALTRANS D80 m-C D. Dow-.4 SUBTRACT 2.45 TO CONVERT TO N(;VO 291 SCALE: I"=5' FOR PIPE TO RCS JOIN BENCH MARK DESIGNED BY REVISIONS ENGINEER RCFC/ CITY OF LAKE ELSINORE RIVERSIDE COUNTY FLOOD CONTROL PROJECT NO. B.M. NO. Z11958 KAM /yAWILSON MIKAMI AND MISSION TRAIL APARTMENTS 3-0-0053 ORAWN 11Y.' THESE PLANS HAVE BEEN REVIEW FOR COMPLIANCE WATER CONSERVATION DISTRICT W CORI-ORATION UT14 THE APPROPRIATE CONDITIONS OF DEWLOPMENT - FD. NAIL W/RCFC WCD TAG,FLUSH AND/Oft CITY AND STATE LAWS,AND A PERMIT CAN BE RECOMMENDED FOR APPROVAL BY-. APPROVED BY., DRAWING NO. KAM 9 CORPORATE PARK,SUITE 100 T;949-679-009D STORM DRAIN 3-0214 LOCATED HE'LY OF THE INTERSECTION DATE DRAWN: Na.49S84 ISSUED. OF NEW CREST DRIVE AND TAMERON WAY IRVINE,CA 92606 F.949-679-Ml JK ELEV: 1520.350(NAM) 68) OC OBER 2017 T-M.=N.P. DATE DATE: OAX-_ DETAILS SHEET NO. 'RCEM.0. 9-30-18 REF. MSCRIPTION APPR. DATE APPR DATE 1 RCE#43920 DATE,- 5 OF 5