HomeMy WebLinkAboutFinal HydrologyHYDROLOGY STUDY
WALMART
South Corner of Cambern Ave.
Lake Elsinore, California
Prepared for:
Walmart Stores, Inc.
2001 S.E. 10th Street, SWDC
Bentonville, Arkansas 72716
t: 479.273.4000
Reviewed by:
John Nourzad, PE
f0reenberUFarrow
30 Executive Park, Suite 100
Irvine, California, 92614
t: 949.296.0450 f: 949.296.0479
Project No. 20080068.8
Prepared by: Date: 10/3/18
ohn Nou ad
RCE# C46039 Exp. 12.31.2018 9 ESSIQN�
Date
Comments
02.16.18
Original
06.06.18
2nd Submittal
07.11.18
3rd Submittal
10.03.18
4'h Submittal
14011��/
No.. 46039
"' kE V. 12/31/18 l
OF
TABLE OF CONTENTS
SECTIONS:
I INTRODUCTION
1.1 PURPOSE
1.2 PROJECT DESCRIPTION
II. FLOW VOLUMES
2.1
METHODOLOGY
2.2
DESIGN CRITERIA
2.3
DRAINAGE STRUCTURES
III. SUMMARY
APPENDICES:
APPENDIX A: VICINITY MAP
APPENDIX B: SOIL GROUP MAPS & STANDARD INTENSITY -DURATION CURVES DATA
APPENDIX C: HYDROLOGY CALCULATIONS
• CA RATIONAL METHOD POST DEVELOPMENT CALCULATIONS PER CIVILD
• C.2 CATCH BASIN CALCULATIONS
APPENDIX D: HYDROLOGY MAPS
APPENDIX E: REFERENCE DOCUMENTS
• OFFSITE DEXTER & THIRD STREET STORM DRAIN WSPGW CALCULATIONS
30 Executive Park
Suite 100
f8reenberofarrew Irvine, .2 96.00 450450
9
949.2
www.greenbergfarrow.com
-- We Are Global
i
SECTION I - INTRODUCTION
1.1 PURPOSE
This report presents the hydrologic analysis for the proposed construction of the lots located at the south
corner of Central Avenue and Cambern Avenue, in the City of Lake Elsinore, County of Riverside, State of
California, The main objective of this report was to analyze the post construction "peak" run-off quantities
for the proposed development.
1.2 PROJECT DESCRIPTION
The project is located at the corner of Central Avenue and Cambern Avenue as shown in Appendix A. The
existing 17.65 -acre site consists of a commercial parcel and four residential tracts. It slopes from a
northwesterly to southeasterly direction at approximately 2% gradient. Cambern Avenue fronts the
northeasterly side of the project site, which is a partially improved street. The existing street right-of-way
half width, on the southwesterly side of the centerline of Cambern Avenue is approximately 30 feet. The
proposed ultimate street half width right-of-way varies from 45 to 57 feet.
Three natural drainage patterns exist on the site and collect along the southerly property line. The two
easterly flow paths have combined about half way through the site creating a natural drainage channel and
outlet into the adjacent property at the most southeasterly corner of the site.
i The developed site will be a commercial retail shopping center consisting of a major retail building with three
outparcels. The site will be graded to generally follow the existing condition drainage patterns to minimize
adverse effects to the current topography and minimize the use of import soil. The majority of the site
(Subarea 100) will drain to the Third Street storm drain, while the remainder (Subarea 200) will drain to the
Cambern Avenue storm drain. Please see the Hydrology Maps in Appendix D for delineation. There will be
no off-site runoff entering the project site. On-site drainage will be treated before it outlets to these storm
drains.
SECTION II - FLOW VOLUMES
2.1 METHODOLOGY
This hydrology study was based upon the Riverside County Flood Control and Water Conservation District
(RCi-C&WQM Hydrology Manual. dated April 1978. This manual allows the use of two methods: the Rational
Method and the Synthetic Unit Hydrograph Method.
30 Executive Park
Suite 100
10reenbergfarrow Wine, 949.2 .2 9261445096.00
www.greenbergfarrow.com
We Are Global
The Rational Method was used to determine peak flow rates for each tributary area for catch basins and
pipe sizing to ensure that the capacity for the 100 -year storm event was met. Please see Appendix C for
Riverside County Approved CivilD Bonadiman Software Calculations. See Appendix D. Hydrology Maps for
an illustration of drainage patterns, tributary sub areas, and storm drain pipes to convey runoff to the storm
drain in Third Street (Subarea 100) and the storm drain in Cambern Avenue (Subarea 200). Pre -development
was not analyzed with the study.
2.2 DESIGN CRITERIA
Design Storm: The 100 -year storm event was used for sizing the onsite storm drains.
Soil Type: "B" (assumed for all areas).
Rainfall Intensitk Rainfall intensity for on-site runoff was based on Riverside County Hydrology Manual
(1978).
Runoff Coefficients: A conservative on-site runoff coefficient of 0.90 was used for calculation of the post -
developed runoff.
2.3 DRAINAGE STRUCTURES
Proposed Cambern & Third Street Storm Drains
The approved Third Street Channel Stage 2 storm drain designed by Michael Baker International (MBI) is
proposed in Cambern Avenue and Third Street. Subarea 100 of the Walmart development is to outlet to the
36" stub of this storm drain in Third Street, while Subarea 200 will outlet to the 24" storm drain in Cambern
Avenue. See the Post -Developed Hydrology Map for delineation of subareas.
Runoff from the entire Walmart site is accounted for by the Stage 2 Third Street Channel. The Walmart
development will discharge up to 50.59 cfs to the Third Street stub and 4.94 cfs to the Cambern stub under
the 100 -year Rational Method storm event.
30 Executive Park
#Greenbergfarrow 296.450
Irvine, CA 92614
949.296.0450
www.greenbergfarrow.com
We Are Global
__ ) SECTION III - SUMMARY
The Rational Method was used to evaluate the hydraulic and hydrologic performance of the proposed retail
center through the Soil Group and Intensity Data in Appendix B. Peak Runoff for the development was
calculated and is summarized in the following table. Please see Appendices C & D for detailed calculations
and locations of facilities. Offsite WSPGW calculations are included for reference in Appendix E — please
see the Offsite Hydrology Study for more information.
Rational Method 100 -Year Storm Event
Post -Developed
Peak Runoff
To Third Street
Line C Left
To Cambern
Line A
To Third Street
Line C (Right)
Onsite
50.59 cfs
Subarea 100
4.94 cfs
Subarea 200
0
Offsite
7.32 cfs
3.22 cfs
1.15 cfs
Total
57.91 cfs
8.16 cfs
1.15 cfs
30 Executive Park
Suite 100
#Greenberghrrow Irvine,CA9
949.296.04500450
www.greenbergfarrow.com
We Are Global
APPENDIX A
Vicinity Map
30 Executive Park
Suite 100
GreenhergFarrow trvine,CA90450
www.greenberg(arrow.com
We Are Global
.� 74
15
9 WE
P41 74 �q
74 q�
LAKE
ELSINORE
SITE VICINITY MAP
NO SCALE
APPENDIX B
Soil Group & Standard Intensity -Duration Curves Data
30 Executive Park
Suite 100
GreenbergFarrow Irvine, CA 92614
949.296.04500450
www.greenberg(arrow.com
We Are Global
♦ M -•U1M 401M MN NM U1r O 4m m d 10 PM r NA NN f 100 4&09p -
I? 1V
P09p-
I?1V ..O PmU1fM
P 1010 N-OMM
. OPPm mP 1011 . f N
Af MM MM M MM NN N N N NN N N N N N.•1r .• - -..-- -.-. .-. --
M 10 Ulmf N•••.N t h •••�NOU1O 10PN 10 .•. A MP VtN PMh Nm a.0.m 0w
O
NPhU1 f MN �.OP Pmm hf+ 10 U1 U1 ♦f MMNNN .-.OP a. 0.m mm
M N N N N NN N N.•. •-• - -. -1-111- -1 - 1-111-- ----
UI 0h mP O.••N M t UI 101- mP ON d 10m O N f 100 C Mom= M-000
.•+ .••..•..••..••. .•+ .••..•..••..••. N N N N N M M M M M f f U1 in 10 10 r r m m
r O <
J O W
Z • )
T W
H �
Q
U W K
P O <
J W + W
tY )
O
W Z
x O N
H •-. W
cx
U <
:1 Z
7 ..
OI
10m 10 U1 .•.
C
10m 101!1 1.11
NmhmN
mdNNN
1.1.0 NOP
PO NUf P
ryPmmO
M10 .-. 1(1 1.11
171 d MN...
• • • • •
Y
0 <
r 0U1 ••+m
U1N OmP
U1 tMN�
c ma!
•.O
17 0: 1
Omh 1010
Ulf d MM
• • • • •
N.-..-. .-.-
U
W
• • • • •
. . . . •
• • • • •
. • . . .
N ----
-----
w.-.. .-. «.-.
Z
Y
.0 10 U1 U1 f
f f d M M
M MMM M
M NNN N
N NNN N
N 1.11.•+ .•.
.•+ .•. r..1+••.
O
W
U1
f O10MO
... P f 1rP
P1D f MN
.-+O PP
mh 101!11!1
f f MMN
N.1.O o P
PP m mm
p
7
NNN 1.11.••
--.-..--. .-.
.. -.... ...1-
•
----
• • • • • 11
m
O
K
40 o MNf
P1o0 r
a N 1 OU1
O.••. d h.•.
10 .+AM O
10PM m M
010 N Pr
11
W
0:
0m NM:2
400 M N
N d 10 PM
f -.p h0 N
M oM= o
NM:2 0 d
OM -MM
R
O <
•I P 1 101
0: 10 U1 d
1 • 0
M 1 c
Pmh 1010
M
Uf U1 f fNoo
M
PPP mm
d fM U110
W
.. W
M M M N N
N NNN N
.+ .-..-..-..-.
.-..r ....r ..
..• .� .........•
ti .-1 .•
11
=
T
f MMM M
N NNN N
N NNN N
.•+ .••..••. •••..••.
.•+ .•1 .• 1.11•.
1.11+ 1111-..r
H
O v7
W
=
a
o v7
U1 10 r- mP
O.�NM f
U110h mP
oN f 10m
ON d 100
OU100O
IAO UIOP
O
.-•. W
�. 1.111.11 •-.1.11
1.111.11.1.1 •••. .••�
NNN NN
M MMMM
d f U1M 1D
10r P- m m
J
Y Y
U110r mP
o.+NM d
U110 r-mP
oN d 10m
ON f 10m
OUZO m O
n m
U1
<�
� 2
••• 1.11 1.11 1.11 ••+
.•+ 1.11 1.11 •••� •••�
N N N N N
M M M M M
d f U1 U1 10
1D A m m
Q Z
O x
O =
r O <
J O W
Z • )
T W
H �
Q
U W K
P O <
J W + W
tY )
O
W Z
x O N
H •-. W
cx
U <
:1 Z
7 ..
OI
10m 10 U1 .•.
K
m m F-.•.0
mp7 d NN
MM 'D ON
'Q 00 P P
N 10 a 1111
1p 1p m. -•U1
oU1010M
171 d MN...
• • • • •
T
o a
h MOm10
fN.•.oP
m1� 10 1711
fM N.•.o
mm
Ito: 0:
X1011 U1 t
♦MMNN
• • • • •
N.-..-. .-.-
U
O W
f ♦ 1 M
MMM M M
MMMMM
NNNNN
N ----
-----
w.-.. .-. «.-.
Z
.•+>-
♦ d 14 MM
MMM MN
N NNNN
NNN N N
N-1.11.+.•
.•-. .•.-w-
--..-. .- -
O
W
U1
f O10MO
... P f 1rP
P1D f MN
.-+O PP
mh 101!11!1
f f MMN
N.1.O o P
PP m mm
p
7
NNN 1.11.••
--.-..--. .-.
.. -.... ...1-
•
----
• • • • • 11
m
�
K
40 o MNf
P1o0 r
a N 1 OU1
O.••. d h.•.
10 .+AM O
10PM m M
010 N Pr
d
W
O:
O f t d
NNt 1pP
MhNmM
PN10010
-ma
f mMm f
o1� dN o
C
O<
�. m 10 f M
N••.p Pm
m f -P- 1010
Uf U1 d fM
9p
NNN-.
.-.00 P P
Pm m mm
d fM U110
W
•-• W
M M M N N
N NNN N
.+ .-..-..-..-.
.-..r ....r ..
..• .� .........•
ti .-1 .•
11
=
T
M NNN N
N N N 1111•.
1111•+ ..r 111-1
.........+ ... -.
1111• .r .r .+
.• .• .•
H
O v7
W
Z
IL
o In
U1 10 r- mP
O.�NM f
U110h mP
oN f 10m
ON d 100
OU100O
IAO UIOP
O
W
�. 1.111.11 •-.1.11
1.111.11.1.1 •••. .••�
NNN NN
M MMMM
d f U1M 1D
10r P- m m
J
��
M Dr W 0
O••.NM. ♦
Uf 10hmP
ONE 1Dm
oNt 10m
OUZO UIO
U10 U1 OU1
Vl
<�
� 2
.r .•.r .a
.
... ... ... .. ...
NN N NN
MMMMM
d f UI U110
10 PA m m
7 .-r
O x
r O <
J O W
Z • )
T W
H �
Q
U W K
P O <
J W + W
tY )
O
W Z
x O N
H •-. W
cx
U <
:1 Z
7 ..
OI
10m 10 U1 .•.
tt
Pr -10 ♦�
U110 P 4p
000 ••f
10M NNM
UlmN
0 f mP-O
1O
4a, f 00
171 d MN...
• • • • •
Y
U
O <
o W
f PU1NP
PU1M 1 .
OP m P.0
U1f M N.••.
oP Pmm
P 10 U1 t f
MN NN.•.
• • • • •
N.-..-. .-.-
Z
.•+Y
f ♦ 1 M
MMM M M
MMMMM
NNNNN
N ----
-----
w.-.. .-. «.-.
W
M
f M.••. U1 U1
PNPm m
P. -.f h.1•
1l1 U1h PN
O
f 10PMm
U1
f O10MO
... P f 1rP
P1D f MN
.-+O PP
mh 101!11!1
f f MMN
N.1.O o P
PP m mm
in
O
NNN 1.11.••
--.-..--. .-.
.. -.... ...1-
•
----
• • • • • 11
U1
W
K
40 o MNf
P1o0 r
a N 1 OU1
O.••. d h.•.
10 .+AM O
10PM m M
010 N Pr
CL
cr
O<
•01`7010.0
fMN.••.o
PPm mP
1� 101A f f
1'11'1 NNN
.•.00 P P
mmm1.-P
W
.ti Y
M.M.O
IAO m OU1 IA
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
d fM U110
10h h mm
M M M N N
N NNN N
.+ .-..-..-..-.
.-..r ....r ..
..• .� .........•
ti .-1 .•
11
=
W
O v7
a
O
W
J
FH
U1 10 r- mP
O.�NM f
U110h mP
oN f 10m
ON d 100
OU100O
IAO UIOP
0
<
K Z
�. 1.111.11 •-.1.11
1.111.11.1.1 •••. .••�
NNN NN
M MMMM
d f U1M 1D
10r P- m m
O S
r O <
J O W
Z • )
T W
H �
Q
U W K
P O <
J W + W
tY )
O
W Z
x O N
H •-. W
cx
U <
:1 Z
7 ..
OI
10m 10 U1 .•.
Nmr mN
m f NNN
M1D NOP
PON UIP
NPmmo
M10 .-.U1 .-.
P- 0111 .••m
• • • • •
U1N Omh
• • • • •
171 d MN...
• • • • •
Omr.O f
• • • • •
M il) .O
•
Omh 10.0
111 f d MM
1010 U1 U1 d
f d dmm
MMM MM
MN NNN
• • • •
NNNNN
• • • • •
N.-..-. .-.-
• • • • •
.-..-. .. .-. .-.
O
M
f M.••. U1 U1
PNPm m
P. -.f h.1•
1l1 U1h PN
10 .. 10Nm
f 10PMm
U1
f O10MO
... P f 1rP
P1D f MN
.-+O PP
mh 101!11!1
f f MMN
N.1.O o P
PP m mm
d MM MN
NNNNN
NNN 1.11.••
--.-..--. .-.
.. -.... ...1-
•
----
• • • • • 11
W
CL
0
U110 hm P
ON f 10m
ON d tom
M.M.O
IAO m OU1 IA
1.1.11^111••.-.
.11..1+111..1..••.
NNNNN
MMMMM
d fM U110
10h h mm
RCFC & WCD
HYDROLOGY JMANUA►_
STANDARD
INTENSITY - DURATION
CURVES DATA
PLATE D-4.1 (2 of 6)
KNJ1a.-4-Us]:FA, 1
Rational Method Post Development Calculations
30 Executive Park
Suite 100
10reenberuhrrow twine, CA 92614
sas.zss.0450oaso
www.greenbergfarrow.com
We Are Global
100YRPOSTI MAJOR WATERSHED
BASIN 100
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1
Rational Hydrology Study Date: 09/25/18 File:100yrpostl.out
--------------------------_------------------------------------------------
********* Hydrology study control Information
English (in -lb) units used in input data file
Program License Serial Number 6215
-------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Condition = 2
Standard intensity -duration curves data (Plate D-4.1)
For the [ Elsinore-wildomar ] area used.
10 year storm 10 minute intensity = 2.320(In/Hr)
10 year storm 60 minute intensity = 0.980(In/Hr)
100 year storm 10 minute intensity = 3.540(In/Hr)
100 year storm 60 minute intensity = 1.500(In/Hr)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.500(In/Hr)
Slope of intensity duration curve = 0.4800
++++++++++-r+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 101.000 to Point/Station 102.000
**** INITIAL AREA EVALUATION *•*
Initial area flow distance = 373.000(Ft.)
Top (of initial area) elevation = 1316.000(Ft.)
Bottom (of initial area) elevation = 1306.000(Ft.)
Difference in elevation = 10.000(Ft.)
slope = 0.02681 s(percent)= 2.68
TC = k(0.300)*[(lengthA3)/(elevation change)]A0.2
Initial area time of concentration = 6.609 min.
Rainfall intensity = 4.324(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.882
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 6.640(CFS)
Total initial stream area = 1.740(AC.)
Pervious area fraction = 0.100
-F++++.......-}...-I-....++.++++.-F.++.....++++++++++++++++++++•Ft++++++t++t+
Process from Point/Station 102.000 to Point/Station 103.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
upstream point/station elevation = 1300.000(Ft.)
Downstream point/station elevation = 1299.600(Ft.)
Pipe length = 95.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow = 6.640(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow = 6.640(CFS)
Normal flow depth in pipe = 13.34(In.)
Flow top width inside pipe = 15.77(In.)
Critical Depth = 11.97(In.)
Pipe flow velocity = 4.73(Ft/s)
Travel time through pipe = 0.33 min.
Page 1
100YRPOSTI
Time of concentration (TC) = 6.94 min.
.... ............. t.... -F -F.. i- ti'.... -F -F -I . i --F.. f....++++++++++++++++++++++t
Process from Point/Station 104.000 to Point/Station 103.000
**** SUBAREA FLOW ADDITION ''*
COMMERCIAL subarea type
Runoff coefficient = 0.882
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration = 6.94 min.
Rainfall intensity = 4.223(In/Hr) for a 100.0 year storm
Subarea runoff = 1.527(CFS) for 0.410(Ac.)
Total runoff = 8.167(CFS) Total area = 2.150(Ac.)
. t **.* *...... .....$-Ft...........-1 .... t++f ........ .F+.................
Process from Point/Station 103.000 to Point/Station 105.000
**** PIPEFLOW TRAVEL TIME (Program estimated size)
upstream point/station elevation = 1299.600(Ft.)
Downstream point/station elevation = 1299.300(Ft.)
Pipe length = 45.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow = 8.167(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow = 8.167(CFS)
Normal flow depth in pipe = 13.10(In.)
Flow top width inside pipe = 16.02(In.)
Critical Depth = 13.29(In.)
Pipe flow velocity = 5.93(Ft/s)
Travel time through pipe = 0.13 min.
Time of concentration (TC) = 7.07 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 103.000 to Point/Station 105.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
stream flow area = 2.150(Ac.)
Runoff from this stream = 8.167(CFS)
Time of concentration = 7.07 min.
Rainfall intensity = 4.187(In/Hr)
+++++++++++++++++#++++++.....++++++++++++.....+++t++++t+++++++++++++++
Process from Point/Station 106.000 to Point/Station 107.000
**** INITIAL AREA EVALUATION ''°''°'' *
Initial area flow distance = 265.000(Ft.)
Top (of initial area) elevation = 1307.700(Ft.)
Bottom (of initial area) elevation = 1302.100(Ft.)
Difference in elevation = 5.600(Ft.)
slope = 0.02113 s(percent)= 2.11
TC = k(0.300)*[(lengthA3)/(elevation change)]A0.2
Initial area time of concentration = 6.045 min.
Rainfall intensity = 4.514(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.883
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 2.710(CFS)
Total initial stream area = 0.680(Ac.)
Pervious area fraction = 0.100
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 107.000 to Point/Station 109.000
''"'"' * PIPEFLOW TRAVEL TIME (Program estimated size) ''°''"'`'`
Page
100YRPOSTI
upstream point/station elevation = 1298.000(Ft.)
Downstream point/station elevation = 1297.200(Ft.)
Pipe length = 130.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow = 2.710(CFS)
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow = 2.710(CFS)
Normal flow depth in pipe = 8.86(In.)
Flow top width inside pipe = 10.55(In.)
Critical Depth = 8.47(In.)
Pipe flow velocity = 4.36(Ft/s)
Travel time through pipe = 0.50 min.
Time of concentration (TC) = 6.54 min.
++ i.. ... ++++.++tt++i-... +++tt++i-++++i-.....++++++++++ h++++ h....++++ i ++++
Process from Point/Station 108.000 to Point/Station 109.000
* SUBAREA FLOW ADDITION *'' **
COMMERCIAL subarea type
Runoff Coefficient = 0.883
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration = 6.54 min.
Rainfall intensity = 4.346(In/Hr) for a 100.0 year storm
Subarea runoff = 2.224(CFS) for 0.580(AC.)
Total runoff = 4.935(CFS) Total area = 1.260(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 109.000 to Point/Station 105.000
'r'°** PIPEFLOW TRAVEL TIME (Program estimated size) **°'*
upstream point/station elevation = 1297.100(Ft.)
Downstream point/station elevation = 1296.800(Ft.)
Pipe length = 69.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow = 4.935(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow = 4.935(CFS)
Normal flow depth in pipe = 10.65(In.)
Flow top width inside pipe = 17.69(In.)
Critical Depth = 10.25(In.)
Pipe flow velocity = 4.53(Ft/s)
Travel time through pipe = 0.25 min.
Time of concentration (TC) = 6.80 min.
+++++++++++++++++++++++++++++++++++++++++++ +++4+++++++++++++++++++++++
Process from Point/Station 109.000 to Point/Station 105.000
:;*** CONFLUENCE OF MINOR STREAMS :;***
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 1.260(Ac.)
Runoff from this stream = 4.935(CFS)
Time of concentration = 6.80 min.
Rainfall intensity = 4.267(In/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
1 8.167 7.07 4.187
2 4.935 6.80 4.267
Largest stream flow has longer time of concentration
QP = 8.167 + sum of
Qb Ia/Ib
4.935 0.981 = 4.842
} Qp = 13.009
Total of 2 streams to confluence:
Flow rates before confluence point:
8.167 4.935
Area of streams before confluence:
Page 3
100YRPOSTI
2.150 1.260
Results of confluence:
Total flow rate = 13.009(CFS)
Time of concentration = 7.070 min.
Effective stream area after confluence = 3.410(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 105.000 to Point/Station 110.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ** ter
upstream point/station elevation = 1296.600(Ft.)
Downstream point/station elevation = 1295.400(Ft.)
Pipe length = 228.00(Ft.) manning's N = 0.012
No. of pipes = 1 Required pipe flow = 13.009(CFS)
Nearest computed pipe diameter = 24.00(In.)
Calculated individual pipe flow = 13.009(CFS)
Normal flow depth in pipe = 15.25(In.)
Flow top width inside pipe = 23.11(In.)
Critical Depth = 15.58(In.)
Pipe flow velocity = 6.18(Ft/s)
Travel time through pipe = 0.61 min.
Time of concentration (TC) = 7.69 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 111.000 to Point/Station 110.000
**** SUBAREA FLOW ADDITION '' ***
COMMERCIAL subarea type
Runoff Coefficient = 0.881
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration = 7.69 min.
Rainfall intensity = 4.022(In/Hr) for a 100.0 year storm
Subarea runoff = 11.345(CFS) for 3.200(Ac.)
Total runoff = 24.354(CFS) Total area = 6.610(Ac.)
+++++++-i..+++++++++++++a-++++a-++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 110.000 to Point/Station 112.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
upstream point/station elevation = 1295.400(Ft.)
Downstream point/station elevation = 1294.200(Ft.)
Pipe length = 242.00(Ft.) manning's N = 0.012
No. of pipes = 1 Required pipe flow = 24.354(CFS)
Nearest computed pipe diameter = 27.00(In.)
Calculated individual pipe flow = 24.354(CF5)
Normal flow depth in pipe = 22.97(In.)
Flow top width inside pipe = 19.25(In.)
Critical Depth = 20.69(In.)
Pipe flow velocity = 6.76(Ft/s)
Travel time through pipe = 0.60 min.
Time of concentration (TC) = 8.28 min.
++t+++4 ......... fill! ..+++++++++++++++++++++++++++++++t++t+++++++++*+.
Process from Point/Station 112.000 to Point/station 115.000
**** PIPEFLOW TRAVEL TIME (Program estimated size)
upstream point/station elevation = 1294.000(Ft.)
Downstream point/station elevation = 1292.000(Ft.)
Pipe length = 201.00(Ft.) manning's N = 0.012
No. of pipes = 1 Required pipe flow = 24.354(CFS)
Nearest computed pipe diameter = 24.00(In.)
calculated individual pipe flow = 24.354(CFS)
Normal flow depth in pipe = 19.59(In.)
Flow top width inside pipe = 18.58(In.)
Critical Depth = 20.94(In.)
Pipe flow velocity = 8.87(Ft/s)
Travel time through pipe = 0.38 min.
Time of concentration (TC) = 8.66 min.
Page 4
100YRPOSTI
++t+++++++t++t+++ti-++++++++++++++++++++++++++++++++++++++++i-++++++++++
Process from Point/Station 116.000 to Point/Station 115.000
••• ••* SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Runoff
Coefficient =
0.881
Decimal
fraction
soil
group A
= 0.000
Decimal
fraction
soil
group B
= 1.000
Decimal
fraction
soil
group C
= 0.000
Decimal
fraction
soil
group D
= 0.000
RI index for soil(AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration = 8.66 min.
Rainfall intensity = 3.798(In/Hr) for a 100.0 year storm
Subarea runoff = 3.478(CFS) for 1.040(Ac.)
Total runoff = 27.833(CFS) Total area = 7.650(Ac.)
++f++++++++++++t+t++++++++++++++.++++++tt++++++f++++++t++++f+++t++++++
Process from Point/Station 117.000 to Point/station 115.000
*''** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Runoff Coefficient = 0.881
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious
Time of concentration = 8.66 min.
Rainfall intensity = 3.798(In/Hr) for
Subarea runoff = 7.057(CFS) for 2
Total runoff = 34.890(CFS) Total area
fraction = 0.900
100.0 year storm
110(AC.)
9.760(Ac.)
+++++++++.+++++-r+++-r+++++++++-r+.++-r+++++++++-r+++++++++-r.........++++++
Process from Point/Station 118.000 to Point/Station 115.000
*''`** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Runoff Coefficient = 0.881
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration = 8.66 min.
Rainfall intensity = 3.798(In/Hr) for a 100.0 year storm
subarea runoff = 0.903(CFS) for 0.270(Ac.)
Total runoff = 35.793(CFS) Total area = 10.030(AC.)
+++++++++++++++++++++++++++++++++++++• f•++++++++++++++++++++++++++++++++
Process from Point/Station 115.000 to Point/Station 119.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
upstream point/station elevation = 1291.900(Ft.)
Downstream point/station elevation = 1288.900(Ft.)
Pipe length = 337.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow = 35.793(CFS)
Nearest computed pipe diameter = 30.00(In.)
Calculated individual pipe flow = 35.793(CFS)
Normal flow depth in pipe = 21.33(In.)
Flow top width inside pipe = 27.20(In.)
Critical Depth = 24.35(In.)
Pipe flow velocity = 9.59(Ft/s)
Travel time through pipe = 0.59 min.
Time of concentration (TC) = 9.25 min.
+++++++++++++++++++++++++++++++++t++++t+++++++++++++++++++++++-r+++++++
Process from Point/Station 120.000 to Point/station 119.000
** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Page 5
100YRPOSTI
Runoff Coefficient = 0.880
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration - 9.25 min.
Rainfall intensity = 3.681(In/Hr) for a 100.0 year storm
Subarea runoff = 1.361(CFS) for 0.420(Ac.)
Total runoff = 37.154(CFS) Total area = 10.450(Ac.)
++++++++++++++++++++++++++. 1 +4-++++++++++++++++++++++++++++++++++
Process from Point/Station 121.000 to Point/Station 119.000
••** SUBAREA FLOW ADDITION
COMMERCIAL subarea type
Runoff Coefficient = 0.880
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration = 9.25 min.
Rainfall intensity = 3.681(In/Hr) for a 100.0 year storm
subarea runoff = 0.972(CFS) for 0.300(AC.)
Total runoff = 38.125(CFS) Total area = 10.750(AC.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 122.000 to Point/Station 119.000
SUBAREA FLOW ADDITION ***it
COMMERCIAL subarea type
Runoff Coefficient = 0.880
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration = 9.25 min.
Rainfall intensity = 3.681(In/Hr) for a 100.0 year storm
Subarea runoff = 3.142(CFS) for 0.970(Ac.)
Total runoff = 41.268(CFS) Total area = 11.720(AC.)
+++++++++++++++++++++++++++++++...4.}++++++++++++++++++++t..fit...f++.++.
Process from Point/Station 119.000 to Point/Station 123.000
PIPEFLOW TRAVEL TIME (Program estimated size) **''`*
Upstream point/station elevation = 1288.800(Ft.)
Downstream point/station elevation = 1287.500(Ft.)
Pipe length = 137.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow = 41.268(CFS)
Nearest computed pipe diameter = 30.00(In.)
Calculated individual pipe flow = 41.268(CFS)
Normal flow depth in pipe = 23.44(In.)
Flow top width inside pipe = 24.80(In.)
Critical Depth = 25.85(In.)
Pipe flow velocity = 10.04(Ft/5)
Travel time through pipe = 0.23 min.
Time of concentration (TC) = 9.47 min.
++++i-i-+.-h++++.+++++-f+.+++.+++++tt+ttttt.t.......................i i h+++
Process from Point/Station 119.000 to Point/Station 123.000
CONFLUENCE OF MINOR STREAMS
Along Main Stream number: 1 in normal stream number 1
stream flow area = 11.720(AC.)
Runoff from this stream = 41.268(CFS)
Time of concentration = 9.47 min.
Rainfall intensity = 3.638(In/Hr)
Page 6
100YRPOSTI
+++++i-........ I-....+++++++.-F+++++.++.++i-+-I ....+.....++.....i -+++{ +i-++++
Process from Point/Station 124.000 to Point/station 125.000
*** INITIAL AREA EVALUATION ''°''°**
Initial area flow distance = 354.000(Ft.)
Top (of initial area) elevation = 1305.500(Ft.)
Bottom (of initial area) elevation = 1303.000(Ft.)
Difference in elevation = 2.500(Ft.)
Slope = 0.00706 s(percent)= 0.71
TC = k(0.300)*[(1engthA3)/(elevation change)]A0.2
Initial area time of concentration = 8.452 min.
Rainfall intensity = 3.843(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.881
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious
Initial subarea runoff = 5.483(CFS)
Total initial stream area = 1.620(Ac
Pervious area fraction = 0.100
fraction = 0.900
+++++++-F+.++.....++f++++++++++++++++++++++++++++-1-+++-t-++++++i-#++++++++++
Process from Point/Station 125.000 to Point/Station 126.000
••*** PIPEFLOW TRAVEL TIME (Program estimated size) i't***
Upstream point/station elevation = 1297.000(Ft.)
Downstream point/station elevation = 1295.700(Ft.)
Pipe length = 264.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow = 5.483(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow = 5.483(CFS)
Normal flow depth in pipe = 10.96(In.)
Flow top width inside pipe = 17.57(In.)
Critical Depth = 10.84(In.)
Pipe flow velocity = 4.87(Ft/s)
Travel time through pipe = 0.90 min.
Time of concentration (TC) = 9.36 min.
Process from Point/Station 127.000 to Point/Station 126.000
''"'"' * SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Runoff coefficient = 0.880
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration = 9.36 min.
Rainfall intensity = 3.660(In/Hr) for a 100.0 year storm
subarea runoff = 2.512(CFS) for 0.780(Ac.)
Total runoff = 7.995(CFS) Total area = 2.400(Ac.)
+++++++++++++++++*+.+.++++++*+++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 126.000 to Point/Station 123.000
**** PIPEFLOW TRAVEL TIME (Program estimated size)
Upstream point/station elevation = 1289.700(Ft.)
Downstream point/station elevation = 1287.500(Ft.)
Pipe length = 438.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow = 7.995(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow = 7.995(CFS)
Normal flow depth in pipe = 14.63(In.)
Flow top width inside pipe = 14.05(In.)
Critical Depth = 13.15(In.)
Pipe flow velocity = 5.20(Ft/s)
Travel time through pipe = 1.40 min.
Time of concentration (TC) = 10.76 min.
Page 7
100YRPOSTI
+++++++++++++++++++++++++++++++++++++++++++.*++++++++++.+t+++.++-I-+++++
Process from Point/Station 131.000 to Point/Station 123.000
**** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Runoff Coefficient = 0.879
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious
Time of concentration = 10.76 min.
fraction = 0.900
Rainfall intensity = 3.423(In/Hr) for a 100.0 year storm
subarea runoff = 2.587(CFS) for 0.860(Ac.)
Total runoff = 10.582(CFS) Total area = 3.260(AC.)
++++++t+++++++++++++++++++++++fi++fi++++++++++++++++++++++++++++++++++++
Process from Point/Station 126.000 to Point/Station 123.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main stream number: 1 in normal stream number 2
Stream flow area = 3.260(Ac.)
Runoff from this stream = 10.582(CFS)
Time of concentration = 10.76 min.
Rainfall intensity = 3.423(In/Hr)
summary of stream data:
Stream Flow rate TC
No. (CFS) (min)
1 41.268 9.47
2 10.582 10.76
Largest stream flow has longer
Qp = 41.268 + sum of
Qa Tb/Ta
10.582 * 0.881 =
Qp = 50.586
Rainfall Intensity
(In/Hr)
3.638
3.423
or shorter time of concentration
9.318
Total of 2 streams to confluence:
Flow rates before confluence point:
41.268 10.582
Area of streams before confluence:
11.720 3.260
Results of confluence:
Total flow rate = 50.586(CFS)
Time of concentration = 9.473 min.
Effective stream area after confluence = 14.980(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.+++.+++.+++
Process from Point/Station 123.000 to Point/station 100.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
upstream point/station elevation = 1287.300(Ft.)
Downstream point/station elevation = 1287.000(Ft.)
Pipe length = 38.00(Ft.) Manning'$ N = 0.012
No. of pipes = 1 Required pipe flow = 50.586(CFS)
Dearest computed pipe diameter = 33.00(in.)
calculated individual pipe flow = 50.586(CFS)
Normal flow depth in pipe = 26.86(In.)
Flow top width inside pipe = 25.69(In.)
Critical Depth = 28.08(in.)
Pipe flow velocity = 9,77(Ft/s)
Travel time through pipe = 0.06 min.
Time of concentration (TC) = 9.54 min.
++f+++++++++tf+++i,++-H++.....-1......4.....+++++++++++++++-P+.... -+++++++
Process from Point/Station 129.000 to Point/Station 128.000
**** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Runoff Coefficient = 0.880
Decimal fraction soil group A = 0.000
Page 8
100YRPOSTI
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration = 9.54 min.
Rainfall intensity = 3.626(In/Hr) for a 100.0 year storm
Subarea runoff = 7.115(CFS) for 2.230(Ac.)
Total runoff = 57.701(CFS) Total area = 17.210(Ac.)
++*+*++++++t.....++++.++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 128.000 to Point/Station 100.000
*PIPEFLOW TRAVEL TIME (Program estimated size) ,,***
upstream point/station elevation = 1286.460(Ft.)
Downstream point/station elevation = 1286.370(Ft.)
Pipe length = 1.80(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow = 57.701(CFS)
Nearest computed pipe diameter = 27.00(In.)
Calculated individual pipe flow = 57.701(CFS)
Normal flow depth in pipe = 17.77(In.)
Flow top width inside pipe = 25.62(In.)
Critical depth could not be calculated.
Pipe flow velocity = 20.81(Ft/s)
Travel time through pipe = 0.00 min.
Time of concentration (TC) = 9.54 min.
End of computations, total study area = 17.21 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.100
Area averaged RI index number = 56.0
Page 9
lOOYRPOSTI MAJOR WATERSHED
BASIN 200
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1
Rational Hydrology Study Date: 09/25/18 File:100YRPOST1.out
------------------------------------------------------------------
.;,`,;,',.r,;*** Hydrology study Control Information
English (in -lb) units used in input data file
------------------------------------------------------------------------
Program License serial Number 6215
Rational ^method ~Hydrology �Program based on^~ ^^
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
storm event (year) = 100.00 Antecedent Moisture Condition = 2
Standard intensity -duration curves data (Plate D-4.1)
For the [ Elsinore-wildomar ] area used.
10 year storm 10 minute intensity = 2.320(In/Hr)
10 year storm 60 minute intensity = 0.980(In/Hr)
100 year storm 10 minute intensity = 3.540(In/Hr)
100 year storm 60 minute intensity = 1.500(In/Hr)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.500(In/Hr)
slope of intensity duration curve = 0.4800
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 201.000 to Point/Station 202.000
**** INITIAL AREA EVALUATION :;*:;*
Initial area flow distance = 379.000(Ft.)
Top (of initial area) elevation = 1312.000(Ft.)
Bottom (of initial area) elevation = 1301.400(Ft.)
Difference in elevation = 10.600(Ft.)
Slope = 0.02797 s(percent)= 2.80
TC = k(0.300)*[(lengthA3)/(elevation change)]A0.2
Initial area time of concentration = 6.595 min.
Rainfall intensity = 4.329(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.882
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 3.171(CFS)
Total initial stream area = 0.830(Ac.)
Pervious area fraction = 0.100
+++++++++++!i i i T+ H r i-+++++++++-h++-h+++ i i i+ d i h h ...+++-.-h++++++++++++++++++
Process from Point/Station 202.000 to Point/Station 203.000
*** PIPEFLOW TRAVEL TIME (Program estimated size) ''"'"'*
Upstream point/station elevation = 1298.700(Ft.)
Downstream point/station elevation = 1298.400(Ft.)
Pipe length = 106.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow = 3.171(CFS)
Nearest computed pipe diameter = 15.00(In.)
Calculated individual pipe flow = 3.171(CFS)
Normal flow depth in pipe = 10.64(In.)
Flow top width inside pipe = 13.62(In.)
Critical Depth = 8.60(In.)
Pipe flow velocity = 3.41(Ft/s)
Travel time through pipe = 0.52 min.
Page 1
100YRPOSTI
Time of concentration (TC) = 7.11 min.
Process from Point/Station 204.000 to Point/Station 203.000
''* SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Runoff Coefficient = 0.882
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration = 7.11 min.
Rainfall intensity = 4.174(In/Hr) for a 100.0 year storm
Subarea runoff = 1.767(CFS) for 0.480(Ac.)
Total runoff = 4.938(CFS) Total area = 1.310(Ac.)
+t+++++++++++++++++++++++++++++++++++++++++++++++t++++++++++++++++++++
Process from Point/station 203.000 to Point/Station 200.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) *••**
Upstream point/station elevation = 1298.400(Ft.)
Downstream point/station elevation = 1297.700(Ft.)
Pipe length = 214.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow = 4.938(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow = 4.938(CFS)
Normal flow depth in pipe = 11.72(In.)
Flow top width inside pipe = 17.16(In.)
Critical Depth = 10.25(In.)
Pipe flow velocity = 4.05(Ft/s)
Travel time through pipe = 0.88 min.
Time of concentration (TC) = 7.99 min.
End of computations, total study area = 1.31 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.100
Area averaged RI index number = 56.0
Page 2
APPENDIX C.2
Catch Basin Calculations
30 Executive Park
Suite 100
/ Greenberg Farrow Irvine CA 92614
949.296.0450
www.greenberg(arrow.com
We Are Global
Inlet Report
Hydraflow Express Extension for Autodesk@ AutoCAD® Civil 3D® by Autodesk, Inc. Wednesday, Jun 6 2018
-104
Curb Inlet
Calculations
Location
= Sag
Compute by:
Known Q
Curb Length (ft)
= 3.50
Q (cfs)
= 1.22
Throat Height (in)
= 4.00
Grate Area (sqft)
_ -0-
Highlighted
Grate Width (ft)
_ -0-
Q Total (cfs)
= 1.22
Grate Length (ft)
= -0-
Q Capt (cfs)
= 1.22
Q Bypass (cfs)
_ -0-
Gutter
Depth at Inlet (in)
= 2.86
Slope, Sw (ft/ft)
= 0.083
Efficiency (%)
= 100
Slope, Sx (ft/ft)
= 0.025
Gutter Spread (ft)
= 6.04
Local Depr (in)
_ -0-
Gutter Vel (ft/s)
_ -0-
Gutter Width (ft)
= 1.50
Bypass Spread (ft)
_ -0-
Gutter Slope (%)
_ -0-
Bypass Depth (in)
_ -0-
Gutter n -value
= -0-
ll, )ns In feet
Inlet Report
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3DO by Autodesk, Inc. Wednesday, Jun 6 2018
-107
Curb Inlet Calculations
Location = Sag Compute by: Known Q
Curb Length (ft) = 14.00 Q (cfs) = 5.80
Throat Height (in) = 4.00
Grate Area (sqft) = -0- Highlighted
Grate Width (ft) _ -0- Q Total (cfs) = 5.80
Grate Length (ft) _ -0- Q Capt (cfs) 5.80
Q Bypass (cfs) = -0-
Gutter Depth at Inlet (in) = 3.20
Slope, Sw (ft/ft) = 0.083 Efficiency (%) = 100
Slope, Sx (ft/ft) = 0.018 Gutter Spread (ft) = 9.42
Local Depr (in) _ -0- Gutter Vel (ft/s) = -0-
Gutter Width (ft) = 1.50 Bypass Spread (ft) _ -0-
Gutter Slope (%) _ -0- Bypass Depth (in) _ -0-
Gutter n -value = -0-
•ii• n in Fed
u 27 _
Inlet Report
Hydraflow Express Extension for Autodesk@ AutoCAD® Civil 3D@ by Autodesk, Inc.
)B-202 (2 EA)
Curb Inlet
Location
Curb Length (ft)
Throat Height (in)
Grate Area (sqft)
Grate Width (ft)
Grate Length (ft)
Gutter
Slope, Sw (ft/ft)
Slope, Sx (ft/ft)
Local Depr (in)
Gutter Width (ft)
Gutter Slope (%)
Gutter n -value
'Ions in fed
= On grade
= 7.50
= 4.00
_
-0-
-0-
-0-
=
0-
-0-
-0-
= 0.083
= 0.025
_ -0-
1.50
= 3.08
= 0.016
013
tl 66
Wednesday, Jun 6 2018
Calculations
Compute by: Known Q
Q (cfs) = 0.31
Highlighted
Q Total (cfs)
= 0.31
Q Capt (cfs)
= 0.31
Q Bypass (cfs)
_ -0-
Depth at Inlet (in)
= 1.54
Efficiency (%)
= 100
Gutter Spread (ft)
= 1.66
Gutter Vel (ft/s)
= 3.11
Bypass Spread (ft)
_ -0-
Bypass Depth (in)
_ -0-
Inlet Report
Hydraflow Express Extension for Autodesk® AutoCAD@ Civil 3DB by Autodesk, Inc.
Tuesday, Jul 10 2018
')B-302
Curb Inlet
Calculations
Location
= Sag
Compute by:
Known Q
Curb Length (ft)
= 7..00
Q (cfs)
= 2.44
Throat Height (in)
= 4..00
Grate Area (sqft)
= -0-
Highlighted
Grate Width (ft)
= -0-
Q Total (cfs)
= 2.44
Grate Length (ft)
= -0-
Q Capt (cfs)
= 2.44
Q Bypass (cfs)
= -0-
Gutter
Depth at Inlet (in)
= 2.86
Slope, Sw (ft/ft)
= 0.020
Efficiency (%)
= 100
Slope, Sx (ft/ft)
= 0.020
Gutter Spread (ft)
= 11.90
Local Depr (in)
= -0-
Gutter Vel (ft/s)
= -0-
Gutter Width (ft)
= 1.50
Bypass Spread (ft)
= -0-
Gutter Slope (%)
= -0-
Bypass Depth (in)
= -0-
Gutter n -value
= -0-
All, )ons in fed
f I
�
J
Inlet Report
Hydraflow Express Extension for Autodesk@ AutoCAD® Civil 3D@ by Autodesk, Inc.
')B-401
Curb Inlet Calculations
Location = Sag Compute by:
Curb Length (ft) = 14.00 Q (cfs)
Throat Height (in) = 4.00
Grate Area (sqft) = -0- Highlighted
Grate Width (ft) _ -0- Q Total (cfs)
Grate Length (ft) _ -0- Q Capt (cfs)
Q Bypass (cfs)
Gutter Depth at Inlet (in)
Slope, Sw (ft/ft) = 0.020 Efficiency (%)
Slope, Sx (ft/ft) = 0.030 Gutter Spread (ft)
Local Depr (in) = -0- Gutter Vel (ft/s)
Gutter Width (ft) = 1.50 Bypass Spread (ft)
Gutter Slope (%) = -0- Bypass Depth (in)
Gutter n -value = -0-
ns in feet
.M ... ...__. __.. ..—--- -.-... .......- ...._�...W._..
0 S•
r
II
}
AM
l
Tuesday, Oct 2 2018
Known Q
= 11.35
= 11.35
= 11.35
_
-0-
5.01
= 100
14.43
-0-
-0-
-0-
APPENDIX D
Hydrology Maps
30 Executive Park
Suits 100
fOreenberoFarrow irvine9 CA 9
ses.29s.0450oaso
www.greenberglarrow.com
We Are Global
101 ~'� \ �' 204 125 \ 1297
127
0.78 CB4
-101 I 1 l
` I '" " r'`� ♦ _203: t
LOQ 1 104 � ��� } , �
- 1 CB�i I
^� 0.41 C 20 --�-� ._ ....., .i �♦ \ .r... » » �°"� ,� ,f
1 ' X 12» O t t 3� X36 SQ. G TE i
I
f I f \-- 2 02 - I I 1 _
oil
Wwo
12'X1G$-1 W-
0 .--' ♦ 0.83 ` . :' ti" J I I 'E - I f�
SQ. TECB`RER SPPWC STD. ! I I I24 r
f
O{ 1 O_ p C l 4�W-7')
111 ♦ \ 4 �� ■ _r ■ ■ ■ _� ■ _}� ■ _� ■_! -. f
\ I ,� 320_ -- _ �PRO�OSY—BUILDINdD
` I 261 \" w — I 131 I
' X/"j 2»X12»O % `_O a` ~� O�0.86 CB -203 \"'! '� CB -401 1`300,
3� 36 GRATE SQ. 103 / C 0 1 W i I
- - 12" *' CB PER SPPWC STD. -' '' •. ,r r` "' ' ' `
II 102 SQ' G )
1.74 f K 112
f l 122
I 1 O B- o
a 1;.,.' 1.04
I I UTLO 12'X » _ ...__ - — - =----- -- ---- - j \ 0.9
III I Wl II - 105 SQ. G --� - 1 ,, I II
_ I 100
-201 CB-3�'I_" --ft�/ � r �'I I li 14.98*
g:. PERS 58
,t»X12 , " ' r.'.::;:: P r 1 / l r - i
3� 3 2 W=7 0 ✓ SQ. GRIT � `� 12» R ��
(At -
DRAIN WIN 1300
109 1»X12» O 4 O O °
` .cB- ,..2/SQG36» S RATE11I0
I I I
,
I I 1 201 ,2.11
♦ItY 1 12 S
� `� I l � � '' I ..-- tf ' -- ..,,t r \ \ '=,�T"r•�f' 0.30
It
I cB-302 118 120
� �� � `�
I I 1
107 -` ✓ - ♦ CB PER SP C STD. 1300 0, 27 _ /- -�' 0.42
--1305- 0.68 B .` . 300-3 ( -14') t I \101
` ✓, �`
I Er
1I i l,.■ - ti -' 115 I I I B-104 119 CB -103 I I ,
I I` ti s'� I CBS PE �SPPW3 24"�X24» x I -.
-CB-105 5Q. G{ATE \ '
_-a2-"Xt2- _ - I ISTD. 300,) o ( -- 1
SQ. GRATE _ -__ - -,I
I \ I III III I I ? -'____________________--___---__-_-______ ;�_____
I11 V I IIII\I�III{lily � ,� � -�-i
II F I I I I I I I I ► a I fi ��___—__...---.__________________
I I I
I:� �.-1295,-7
-
I I I
W1 I V I I I ISI III I I I _ o¢
f,-....; ► 1 a x -
a 1 I I I
� _ —� �, ,-
\}€ 1 I Ii IIIIII -__ ` I I IIII II�III IIII I SIX — X'\
_ I ,-�£ ill _ IIIIIIIIIIIIIIItIII VIII I I I� 1
I I ,
�,�� � rl � �___ S �...,..� � ,� ._ O `^wf �,—..''" j � � III : I ; : I I I l v l t l ' � I I ' I l I I 1 , I , d I I 1 ►
A I
r . �'
III fk�� LOT 6
III x
f I '� i ' jj" a ( I 1 1 1 /M- -'-. -' ■� =_=___ its
ijT� /- ,j� �j I� / j � i I I �� � \ .,� x j� �( � '. w/ _ ✓^` "' r, 1
I i fi % / 1
� j l � —4-' f 1
x
77
WW
D X°X T/E R r , _ - 4 it �- , 1 P --IJ.
/ ' -- --12 0- -- .:_. — -_. _ , � f � � � � j f j -- '� `\� �\ I � GRAPHIC SCALE
v}
I � /
® _ I EXISTING 30" ,� %. _ . ~- I I I - - Ix X
0 30 60
i � .. j
RM DRA N ` w ..
..1 ti �°� ��`�; - y' k § \ V>` / IN FEET
y 1 inch = 60 ft.
..,._.-.. � �° � � I i 4 , � i t � '� .`.! \°`.•v.� � i '',,�� �� \Iia..``,, `` I 1 s 4 ca � � � r- .,.'.`-----'-"'1 I 1....t � 1 1
Know what's below.
? I->
0111 before you dig.
MARK REVISIONS
THESE PLANS HAVE BEEN REVIEWED FOR COMPLIANCE WITH THE APPROPRIATE CONDITIONS PREPARED BY: SEAL
APPR. DATE OF DEVELOPMENT AND/OR CITY AND STATE LAWS, AND A PERMIT MAY BE ISSUED.30 Executive Park, Suite 100
ne, CA 92614
GreenhergForrOW t: 949 296 04501rf X949 296 0479
BRAD FACRELL RCE 43920
CITY ENGINEER
DATE
JOHN NOURZAD, RCE No. C46039
DATE
N Mvv/�
No. 46039 7°
♦ Exp. 12/31/18
�ql CIV11-
F 4F CAu�
BENCHMARK:
SITE LOCATION MAP
NOT TO SCALE
LEGEND
100 MAJOR WATERSHED NODE
- AREA IN ACRES
6.65 * DENOTES TOTAL AREA
SUBAREA WATERSHED NODE
1.24 -------- AREA IN ACRES
�■ ■ �� HYDROLOGIC MAJOR WATERSHED BOUNDARY
-f- -
1310
1310—
CB-101 •- -1310- --- -
CB -101
SCALE: 1" _ 60' DRAWN: NB
DATE: CHECKED:
September 27, 2018 JP
HYDROLOGIC SUBAREA WATERSHED BOUNDARY
FLOWLINE
STORM PIPE FLOW DIRECTION
PROPOSED MAJOR CONTOUR
PROPOSED MINOR CONTOUR
EXISTING MAJOR CONTOUR
EXISTING MINOR CONTOUR
OFFSITE HYDROLOGIC WATERSHED BOUNDARY
CATCH BASIN NUMBER
NOT FOR CONSTRUCTION
CITY OF LAKE ELSINORE DRAWING NUMBER:
WALMART SUPERCENTER #2077-07 HYD -01
ON-SITE IMPROVEMENT PLANS SHEET 1 OF
POST -DEVELOPED HYDROLOGY MAP FILE No.
1
alar
.�
11'�
-� �• ►• 1� •
--.� � / y
�,�.���-�► �_
����� �sr�—�.��'-"i__`��� `ice-»�' �"�_ „�'
� �'-� ---_= � � ��-�-�M��,
-1
101 ~'� \ �' 204 125 \ 1297
127
0.78 CB4
-101 I 1 l
` I '" " r'`� ♦ _203: t
LOQ 1 104 � ��� } , �
- 1 CB�i I
^� 0.41 C 20 --�-� ._ ....., .i �♦ \ .r... » » �°"� ,� ,f
1 ' X 12» O t t 3� X36 SQ. G TE i
I
f I f \-- 2 02 - I I 1 _
oil
Wwo
12'X1G$-1 W-
0 .--' ♦ 0.83 ` . :' ti" J I I 'E - I f�
SQ. TECB`RER SPPWC STD. ! I I I24 r
f
O{ 1 O_ p C l 4�W-7')
111 ♦ \ 4 �� ■ _r ■ ■ ■ _� ■ _}� ■ _� ■_! -. f
\ I ,� 320_ -- _ �PRO�OSY—BUILDINdD
` I 261 \" w — I 131 I
' X/"j 2»X12»O % `_O a` ~� O�0.86 CB -203 \"'! '� CB -401 1`300,
3� 36 GRATE SQ. 103 / C 0 1 W i I
- - 12" *' CB PER SPPWC STD. -' '' •. ,r r` "' ' ' `
II 102 SQ' G )
1.74 f K 112
f l 122
I 1 O B- o
a 1;.,.' 1.04
I I UTLO 12'X » _ ...__ - — - =----- -- ---- - j \ 0.9
III I Wl II - 105 SQ. G --� - 1 ,, I II
_ I 100
-201 CB-3�'I_" --ft�/ � r �'I I li 14.98*
g:. PERS 58
,t»X12 , " ' r.'.::;:: P r 1 / l r - i
3� 3 2 W=7 0 ✓ SQ. GRIT � `� 12» R ��
(At -
DRAIN WIN 1300
109 1»X12» O 4 O O °
` .cB- ,..2/SQG36» S RATE11I0
I I I
,
I I 1 201 ,2.11
♦ItY 1 12 S
� `� I l � � '' I ..-- tf ' -- ..,,t r \ \ '=,�T"r•�f' 0.30
It
I cB-302 118 120
� �� � `�
I I 1
107 -` ✓ - ♦ CB PER SP C STD. 1300 0, 27 _ /- -�' 0.42
--1305- 0.68 B .` . 300-3 ( -14') t I \101
` ✓, �`
I Er
1I i l,.■ - ti -' 115 I I I B-104 119 CB -103 I I ,
I I` ti s'� I CBS PE �SPPW3 24"�X24» x I -.
-CB-105 5Q. G{ATE \ '
_-a2-"Xt2- _ - I ISTD. 300,) o ( -- 1
SQ. GRATE _ -__ - -,I
I \ I III III I I ? -'____________________--___---__-_-______ ;�_____
I11 V I IIII\I�III{lily � ,� � -�-i
II F I I I I I I I I ► a I fi ��___—__...---.__________________
I I I
I:� �.-1295,-7
-
I I I
W1 I V I I I ISI III I I I _ o¢
f,-....; ► 1 a x -
a 1 I I I
� _ —� �, ,-
\}€ 1 I Ii IIIIII -__ ` I I IIII II�III IIII I SIX — X'\
_ I ,-�£ ill _ IIIIIIIIIIIIIIItIII VIII I I I� 1
I I ,
�,�� � rl � �___ S �...,..� � ,� ._ O `^wf �,—..''" j � � III : I ; : I I I l v l t l ' � I I ' I l I I 1 , I , d I I 1 ►
A I
r . �'
III fk�� LOT 6
III x
f I '� i ' jj" a ( I 1 1 1 /M- -'-. -' ■� =_=___ its
ijT� /- ,j� �j I� / j � i I I �� � \ .,� x j� �( � '. w/ _ ✓^` "' r, 1
I i fi % / 1
� j l � —4-' f 1
x
77
WW
D X°X T/E R r , _ - 4 it �- , 1 P --IJ.
/ ' -- --12 0- -- .:_. — -_. _ , � f � � � � j f j -- '� `\� �\ I � GRAPHIC SCALE
v}
I � /
® _ I EXISTING 30" ,� %. _ . ~- I I I - - Ix X
0 30 60
i � .. j
RM DRA N ` w ..
..1 ti �°� ��`�; - y' k § \ V>` / IN FEET
y 1 inch = 60 ft.
..,._.-.. � �° � � I i 4 , � i t � '� .`.! \°`.•v.� � i '',,�� �� \Iia..``,, `` I 1 s 4 ca � � � r- .,.'.`-----'-"'1 I 1....t � 1 1
Know what's below.
? I->
0111 before you dig.
MARK REVISIONS
THESE PLANS HAVE BEEN REVIEWED FOR COMPLIANCE WITH THE APPROPRIATE CONDITIONS PREPARED BY: SEAL
APPR. DATE OF DEVELOPMENT AND/OR CITY AND STATE LAWS, AND A PERMIT MAY BE ISSUED.30 Executive Park, Suite 100
ne, CA 92614
GreenhergForrOW t: 949 296 04501rf X949 296 0479
BRAD FACRELL RCE 43920
CITY ENGINEER
DATE
JOHN NOURZAD, RCE No. C46039
DATE
N Mvv/�
No. 46039 7°
♦ Exp. 12/31/18
�ql CIV11-
F 4F CAu�
BENCHMARK:
SITE LOCATION MAP
NOT TO SCALE
LEGEND
100 MAJOR WATERSHED NODE
- AREA IN ACRES
6.65 * DENOTES TOTAL AREA
SUBAREA WATERSHED NODE
1.24 -------- AREA IN ACRES
�■ ■ �� HYDROLOGIC MAJOR WATERSHED BOUNDARY
-f- -
1310
1310—
CB-101 •- -1310- --- -
CB -101
SCALE: 1" _ 60' DRAWN: NB
DATE: CHECKED:
September 27, 2018 JP
HYDROLOGIC SUBAREA WATERSHED BOUNDARY
FLOWLINE
STORM PIPE FLOW DIRECTION
PROPOSED MAJOR CONTOUR
PROPOSED MINOR CONTOUR
EXISTING MAJOR CONTOUR
EXISTING MINOR CONTOUR
OFFSITE HYDROLOGIC WATERSHED BOUNDARY
CATCH BASIN NUMBER
NOT FOR CONSTRUCTION
CITY OF LAKE ELSINORE DRAWING NUMBER:
WALMART SUPERCENTER #2077-07 HYD -01
ON-SITE IMPROVEMENT PLANS SHEET 1 OF
POST -DEVELOPED HYDROLOGY MAP FILE No.
APPENDIX E
Reference Documents
30 Executive Park
Greenberg Farrow 296.0450
Irvine, CA 92614
949.296.0450
www.greenbergfarrow.com
We Are Global
I
(� FINISHED SURFACE
FIhTAICp SURFACE .. ..
4- *R STM DRAIN t - .. .
�- 0vMsTORU It 'C f
._ ---- - - '-• - -- --1305 - -- --- --•1706... ______ ...-._-. - : -•-'—�- --.._ .� . � . ----- las _.- ..... - ..I+�y.,.--_- __. _.
SURFACE WER - - - .
• / STM DANK [' I ' 2 SIORMcz
--- -- --�.. -"4DDQ, "" - •r •~ t - - - ------ ...-_lam-•.--- •- - �RP1F - - - - - --- 14 ". - .. .. ------
8 I HGL
5
I,
SEE ONSIIE� .. S.DX50 GSt»0.019]' .� ... ....... .. ... .... .. .. ..... .. .. ... .. . .
.. P1a4 FOR50:731F - - ..
fp!{IN0.41g1( Mu AWuN � � � � ...9HSDE-� . T � I ! 5.0.0106
iD-ILOAQ 2590
. Gw�8.16 CFS
I.&f OF I + J6.90 LF
._.1295- Nw-2.60 FPS _ - 4495_ _ -�7au. S10R11 DPNH . . .. .1 1 STIr DRAM ..-- ..'1265• -
Q-LOLQ 2500 0-LOAT1. 3000 _..
.. :. .:.
.. .. .. 9wo.57.91 .CFS. m04•.1.15 CFS ..._. .: .. ... .... ... _
. .. - Vwm-&19 FPS Hm=0,65 FPS
I
.10 50. : 36{IXI : 9 20156 : f 40+00.- .30
LINEA ;INE C (LEFT): LINE C (RIGHT)
CAMBERN AVE THIRD ST THIRD ST
.. Y = 20' HOR 12
1• = 2' VERT.
I II II II I 1 III � I
STORM DRAIN NOTES: i i I I I II ' i;l LINEA
NOTE DESCRIPTION11
I �T
REMOVE (E) CONCRETE BULKHEAD. CONNECT TO E 24" (E) STORM IDRATR
30 () RCP SR THIgD STR QW#dSTA
I II }I' - jF; - - - - -_. ._� L:•-�- - _—
31 INSTALL 18" RCP SO; D-LOAD PER PUN
..74 WAIEI �I
3 INSTALL 36" RCP SD; D-LOAD PER PLAN i II I CROSSINGp,��, I II I Q
LINE DATA 1 - o - ' f 33 CONSTRUCT CATCH BASIN Na 1 PER RCFC&WCD STD DWG
_---_-- - � L_ ---- --- O N0. CB100, W=1$ T(E) X51 I I CROSSING �' I 1 •o i�
34 CONNECT TO (E) MANHOLE STUB 1 PER i51�E'f 5 3 1 Ll%«•• »- 0
(130400)FG r QHANNEL STAj1lEs; 1-2,_ALOA1 I O I I ym7� I a
-(1304
INSTALL 24" RCP SO; D-LOAD PER PUN )SEE ONSQFf 1174 I yi II W •`� r
CAUTION: UTILITY CROSSING!!! (FOR )I�T�I I I i 4 I f{ 1 1 V 2
MUST HAVE 1 FF MIN. VERTICAL CLEARANCE r ° I 15 III W=7' I I q Y
{E] STORM DRAIN PER SEPARATE CONSTRUCT CATCH BASIN NO. 1 PER RCFC&WCD SID DWG 1 4 - Com' II. pro=1,15 CFS
THIRD STREET 37 NO, CB100, W=7' f J'd 11 '! -- k . Mw=0-65 FPS I I a • • I I 3
- - - TATE 2 PLANS pw.61.'i1 ICES I . I Q I
INSTALL BIO CLEAN MODULAR CONNECTOR PIPE SCREEN OR
RtkCddVCO _
� CHANNELS 1
bCROSSING
12"'l1--_ i1'w --- - ,-'!'.v - �� - - '2"v. c;"y. 3B 'A o & 9 FPS ' I I a
•••••"`-o--{ APPROVED EQUAL + 30f0�.39 y I I (r= .
CURVE DATA WA 39 CONSTRUCT LOCAL DEPRESSION PER RCFC&WCD STD DWG. j pj I I I �
CI NO, LD20119+9..51 D10 C' [L
L 40 INSTALL CATCH BASIN MARKER PER DETAIL ON SHEET 7I-29i 151 LINE Cr ( 11 I 4 `f Jpr----•--
- - . 107. Ii '
_ - T� si
S NELI '� '-(I 54X) NPID
P sTAGE.k;
GRAPHIC SCALE
--91
_ I I
1
IN FEET)
inch = 20 ft II LII e, . •, . - —. I I l
Nm=260 FPS --_--�---_ Iii I III I 1
� LINEA � O GRAPHICSCALE LINE C (LEFT)_ LINE C (RIGHT) NOT TO INDEXMCALE
AP
CAMBERN AVE (c FEET) THIRD ST THIRD ST NOT FOR CONSTRUCTION
Know what'sbelOW. , inch = 20 ft.
Call before you dig. —
THESEHAVE BEEN REVIEWED FOR COMPLIANCE WITH THE APPROPRIATE CONDITIONS PREPARED BY SEAL BENCHMARK: DESIGNAHON #3433 AGENCY: RIVERSIDE COUNTY aw" NWe[.N.
MARK REVISIONS APPR. DATE 'OF DEVEPLANS LOPMENT AND/OR CITY AND STATE LAWS, AND A PERMIT MAY BE ISSUED, 30Executive Park ,Sui[e100 Yl1 TRANSPORTATION COMMISSION ELEVATION: 1316.96 FEET. MONUMENT CITY OF LAKE ELSINORE
Greenber Farrow Oy 1 1i00R�� TYPE: FOUND 2- BRASS DISC WITH 10' CONCRETE COLLAR. LOCATION;
9 Irvine, CA 92814 OR 7 SOUTHWEST CORNER CENTRAL AVENUE AND CAMBERN AVENUE (DOWN
1: 949 296 0450 L: 949 296 0479 1 0') AGENCY: NGVD 1929 11 1
46039 SCALE: DRAWN: STREET IMPROVEMENT
a•
12/31/10 n gg SHEET 1 1 OF 13 s
STORM DRAIN PLAN &PROFILE
JOHN NOURZAD, RCE Nm C46039 DATE �'/j Iv DAT£: CHECKED: FILE No.
BRAD FAGRELL RCE 43920 DATE C Of CA'v5 September 24, 2018
CJP
ITY ENGINEER
r—I1.,
0-
-C is
0
0
0
0
Lr,
e
s .-
U I.,
N
4-J 0-
1.
ie
3\
Q) i.
LU
LU
L
LULnM-
-,,,
a-
a-
CL
u. In
j,
0 L.
>,I,,
r -I
H
rl
H
rl
H
r -i
CL
IN
CD
0
0
CD
CD
0
CD
-j
ce is
0
0
0
0
0
0
0
E
N
N is
I 4c
I
4-J -
I r I,
O I
00
3: 0
0
0
0
0
0
CD
0
M
0
0
CD
CD
O
a1 H
LL q.-
r1i
Ul
0
Ln
Ix
CO 0
4-J LL
IN
CD
0
0
0
= I
z IN
0
m
0
m
0
m
0
(M .
Z q,
0
H
0
H
0
H
0
cu
-- M
7 ,,
.
CD
.
0
.
0
4-J
e3j.-
Ix
r14
r\j
r1i
r14
as
x 0
t
I
0
clic
0 is
0
r -I
CD
r -I
0
CD
0
is
4J
it
0
0
0
0
0
0
0
3: _0
E is
0.-
Lit
rl
r -I
3:
0 it
LL
I z qt
I
I
--
—
— —
— —
— —
— —
I Zi ,
t
I
I
I
ill.
CD
0
CD
q,
U=
W,
r-4
0
r1i
0
r1i
CD
rj
4-J
-a,,.
0
0
0
0
it
4-J 0.
3-
•rQj
o".
-1
rl
rl
r -I
il
u
I LL ic
I
I
I
I
00
I
1-
p
is
L- >
1•• is
0
In
0
0
C,
m
CD
W W
clqc
0
.
0
0
.
0
Z
I.,
Cl—
0 it
In
LM
F-4
i,
= LU
is
is
LI)
LU %
O Ln
I Ln is
I
j
I
I
<0 H
I '-i
is
I IN
I- to
il
m
m
m
m
00
0
w
W L. LLI
Ix
0) LLJ
IN
m
0
0
0
0
0
0
I CU -JIll
L. -
LL i
.
.
.
.
OO > H
I ,
'
CU -0
M: i
N
rn
M
M
LL
1,
C: L-
CD
CD
CD
CD
Z 0
q,
LU 0
rn
rn
M
M
ce
il
IN
r -I
r -I
r -I
r -I
co—
---
—
— —
— —
— —
,�o LLnLj,--i LU
j (W IN
0 1
M
CD I
M
CD 1
M
CD I
P- u
IN
-0
> is
r -I
1-1
r�
H
H
H
H
<
is
r ro
CD
CD
CD
00 H
W (V
I.,
C) > LOG
a) Z)
is
>2
LL
V) 1,
C) H
V)
IN
I
I
r,j U -0
E
3O:'
r%
C) 1
0 1
01
01
Z LU
(.0
QD
e.D
(.0
I.c
il
Q) CLI.:
N1`14
r4
Nt03>
LL
11
1-1
IN
0_ L. LL J
ic
I i.
I
I
I
I
a) ce
LU I
N
— —
—
— —
— —
— —
UtL/) 0
Z is
I IN
l0 I
l0 1
(.0 1
1.0 1
Z
H is
r -i
r -I
r -A
a) H
J'c -j'
I-N
is
al V)
V)
00
00
00
00
m -i
Z'
Cf LL
-e LU
Q� 41
u
u
LLI 1.,
11
(13 LU
co is
IN
---
—
— —
— —
— —
IN
61
rlj
n
P\
2:
LU i
L-
IN
00
m
0)
m
iT 3:
H
(1) >
0
H
4-J QJ
L. 00
U) is
M r
I..
CD
C
CD
C)
0. 1.0 >-
LL I.c
:R: LLJ
re)
rn
ry)
M
CD
LL is
r -I
rl
r -i
H
0001,
1
1
1
00 CD
lh
—
— —
— —
——
Ln O H
I
en I
NI
re) 1
H
�
r1i
q'
4-J e-'�
Ln
It
re)
re)
IN
a) LL
L4
1;
to
L4
z
LU
57
<
a)
u
4-J
Qi;
MLn
Ln
Ln
L.0
CD
l0
I
L. >
0 ic
0
0
0
00
q,
CU a)
r 1.,
11,
CD
n
C)
n
C)
P,
e.0
>r
V1ism
.
011
.
m
.
(n
0
C: LU
IN
r14
N
N
r4
0
is
H
-C
r-4
r1r-I
00
IN
I Ui.
I
I
I
O CD
IN
1
10
0 10
0 10
0 1
C
INO
w
w
m
rl
w
Ln
0
E=- 1,
0
k.0
t.0
0
rl
m
r -
(V
Ll;;
4-J
Ic
0
Lf;
In
let
0;
CD
co
LU IN
0
r1i
('14
rli
It
In
4-J
',i'
0
0
0
CD
LL
il
H
r -i
H
0+-
04-
1-1
Tl
T2
T3
50
R
SH
CD
CD
Q
20080068-CAMBERN-A
20080068 WM LAKE ELSINORE 0
100 YR
OFFSITE CAMBERN LINE A
1000.0001297.380 1 1302.890
1025.6801297.510 1 .013 .000 .000 0
1049.7701297.630 1 .013 -60.017 .000 0
1050.7501297.630 1 .013 .000 .000 0
1050.7501297.630 1 1297.630
1 4 1 .000 2.000 .000 .000 .000 .00
2 4 1 .000 1.500 .000 .000 .000 .00
8.160 .0
Page 1
H
Ln
4-) 0 -
is
3: 1,
Q) I.0
uj
LLj
it
In
CLIc
a-
x
ry)
is
0 L-
>,I.crl
H
r-1
C)
0
C)
rl
••
I,.,
Z CL
Ic
i
CL
I
I
co
I
I
CL rl
14
IN
CD
0
0
CD
CD
CD
CD
I,
CD
CD
CD
CD
CD
CD
CD
E
N
N%
4-J -
I r is
~ CD I
CD
0 1
CD I
CD
CD I
CD I
00
It
3: 0
J.,
CD
CD
0
0
0
0
0
r-1
111.
.
(13'..
CD
CD
CD
CD
CD
CD
W H
LL I,
N
is
Ul
I
rd L.
N
I
m
IN
4-) LL
CD
0
0
CD
0
is
= I0)
Ic
CD
m
CD
r-1
M
r-1
CD
is
.
Z
CD
r -A
CD
r -q
r-1
CD
aj
.- rd
.
CD
0
4-J
W.-
M
rn
011
m
rn
rd
Z: 0
I,
CL
I
0
cLli
Ht
0 Ir
0
CD
CD
0
CD
CD
4J
it
CD
m
CD
CD
CD
CD
-0
E 4,
0.-
Li
r4
It
It
LL
I Z is
I z
I
I
I
I
'trd
is
CD
I.
U=
(V
t.0
CD
t.0
r-1
to
I-
H
.c
-- 4-J
_0
T
:T
00
CD
r�
M
1,
.,
4-J CL
M J.,
is
QJ
01.4
r1i
r1i
r1i
is
u
I LL
00
CD
is
L- >
4-J is
CD
00
CD
't
�
0
It
W (V
cLil
CD
.
CD
CD
m
CD
CD
Z
I.
Cl—
0-,,,
rn
H
M LLI
IN
Ln
uq
LLJ It
Ln
I-
I Ln IN
t
I
0 H
V)
N
M
In
l0
CD
r,
1.0
L. LL]
0) LU
I-
rlj
CD
N
n
CD
�
Ln
LL ai -j
it
L. -
LL I.,
LU > H
-,,,
W -0
m is
r-1
LL
llc
c L.
m
Z 0
1,
LU U
0'
H't CL
It
� LU H LU
I
Ln
"t I
r-1 1
0
H 1
01
H 0 r- U
> is
CD
�
CD
CD
CD
CD
00
-j <
is
r rd
< J.-
.
CD
0
F -i E
W W
IN
r-1
CD
r-1
CD
>>
M:
LL
H a)
Ln
U-0 V)
E
I = 0L
1
m I
M 1
00 1
r -j 1
1.0 1
Z LU
r�
r-
r -i
<
LL
CL00
(1)d00
4-
00
nrd
3
LU I,
> LL
114
_j It
11
it
0_ L. LU
is
I N
I
I
I
I
I
a) a
u—
Y
—
—
— —
— —
— —
— —
In L/) 0
11
1
H I
r-1 I
H I
m I
a) I
Z
LU
m
a)
a)
Ln
Ln
CU H
Z
0) U)
H
L/)
IN
r,
r,
n
0
M -J
-J is
0' LL
I.
In
Lr)
Lr)
Ln
Ln
� LUI-
u
I.
U
p--/
-
rd LU
� I.
I-
a- Y
H;
II
I
I
<
Z: I,
—
—
—
— —
E _j
I
CD I
-Cl- I
re) I
CD I
ri I
(z
m
CD
Ln
1.0
I'D
2:
W',
L-
H
r4
�
O 3:
a) >
0
H It
4-J (3)
is
CD
CD
14
r-1
r-1
L. 00
L/) is
rd—
ON
m
m
a)
m
CL LO
LL J.,
3 LLI
N
r -i
rlj
r1i
r14
CD
LL is
I,
000I,
I
00 CD
is
CD H
I..
I -1,-
0 1
-,j- I
M I
CD I
r -i I
C)
I,
-C
rlj
m
0
CD
(Ili
it
4-J r-,
00
n
rlj
CD
CD
I,
CL
(1) LL
re)
m
Ln
Ln
Ln
CD I
C) I
CD I
CD I
LL
aj is
n
r1i
t.0
to
I.D
1.0
LLI
4-J
Oic
re)
m
'ZI,
H
n
n
c
L. >
0 it
-
'T
.
r14
Q) OJ
— is
t.0
0
1.0
w k.0
k.0
tD
110
V
> r
L/) 1,
00
00
u 00
0
00
00
C LU
IN
r1i
r1i
z r14
r14
r1i
A-
I
F-1
IN
r-1
r -i
< r-1
Hrl
0C
U 1,
I
I
1
1
1
H
— —H—
—
0 1
C)
CD I
z CD I
n'
0 1
x 0 1
It
r_r-4
M
Ln
W In
W
W W
1,
0
ry)
00
r-1
r-1
L/)
a)
m
ai is
4-J
0
H
r-4
—i r14
(.0
-j 1.0
J
is
rd
LLJ is
0
0
—1 0
u
CD
-i CD
4J
0
0
< 0
z
0
< 0
LL
is
Lf)
-j I.
r1i
rli
3: "
n
N
3: r4
M
0+-
H
THIRD -C -LEFT
T1 20080068 WM LAKE ELSINORE
T2 100YR
T3 OFFSITE THIRD LINE C LEFT
So 2000.3201286.370 1 1290.190
A2002.1501286.460 1 .013
2002.1501286.460 2 .500
7x 2006.9801286.760 5 3 .013 7.320 1295.090
Wx 2006.9801286.760 6
SH 2006.9801286.760 6 1286.760
CD 1 4 1 .000 3.000 .000 .000 .000 .00
CD 2 3 0 .000 9.110 14.000 .000 .000 .00
CD 3 2 2 .083 .500 14.000 .000 .000 .00
CD 5 3 0 .000 9.110 14.000 .000 .000 .00
CD 6 4 1 .000 3.000 .000 .000 .000 .00
Q 50.590 .0
Page 1
.000 .000 0
90.0 -45.000
r -I
w
CD
O
=*
0
0
C)
C)
re)
I.,
4-J CL
11
,
:r. 1-1
Q) -1
LLI
LU
LU
LLj
Ile
(n
CL*
0-
a.
a-
1,
0 L-
H
rl
H
r-I
H
H
Z a-
CD
CD
0
0
0
0
0
w
is
-j
0
0
0
0
0
0
CD
E
N
N ic
is
4J -
1 r is
0 1
0
0 1
CD
CD I CD
CD I
00
is
:r. 0
r IN
0
CD
0
0
0
0
0
r-I
i.
.
*
0
CD
CD
CD
CD
ill
qu H
LL i,,
N
11
UlI
I
-,I
rd L.
x is
m
q,
Co 0
1
H
is
—
— —
— —
— —
I
If
I
I
I
4-1 LL
Ile
CD
0
0
CD
I0)
m 'A
CD
m
CD
m
0
m
CD
.
Z*
Ln
H
Ln
r-A
Ln
r-I
Ln
.- rd
CD
.
CD
.
0
4-1
CU
is
rl
r-I
r-I
r-I
CL
I
0
Ln
4J
0
m
CD
m
0
3:-o
E it
3:
01,
LL
I Z i
I
I
I
I Z
I
is
rd
is
CD
0
CD
U =
cli
0
0
0
CD
0
0
0
4-1
-0 is
It
It
.1,
IT
is
4-1 CL
=3
OJ
01.,
is
u
r LL is
I
I
I
00L.>
1
00
10
1
00
1
CD
4-J
0
m
0
CD
CD
r-I
0
(V W
CM,
0
.
0
CD
.
CD
Z
is
0-r
0 il
M
M
r-I H
M LU
is
F--
1,
LA
LLJ I
.c
ul
I In is
1
1
1
1
O
Q� tA
q,
0
0
CD
CD
IL. LU
is
CD LU
N
N0
r,4
0
r-4
0
r-4
UCU -J
j..
L- -
LL i,
I> F-A
I..
Q) _0
M: jc
CD
0
0
CD
LL
C L.
is
m
m
m
m
Z 0
LLJ U
Ile
"
r14
r1i
r1i
Ce
1,I
I
r-I
r-I
-
—
—
— —
— —
— —
— —
I w r-I W
Ile
I a) isrl
I
r-I I
r1
r-I I
r1
r-I I
00 in r, U
-a
> is
0
0
0
0
0
-.0 -1 <
_ rd
< q.
0
CD
0
0 LL
W (V
0
0
0
0> Lce
>S
LL
00 H W M
U0
C:, U-0 Ul
is
0E
is
r\j I = Q'
is
I Ile
LM I
Ln I
Ln I
Ln I
Z LLI
ic
— Ln
,,
aj (L
i,
W:R:
F-4 Ic
> LL
Q. L. LLI
is
QJ Q'
U is
Ln Ln 0
il.
I
Ln I
Ln I
Ln I
Ln I
Z
LU il
r-I
H
r-q
r-I
a) H
Z is
1-1
cm LA
H 11,
0
1-
H
r4
r-i
r-i
rd -J
J?:
CY LL
i.
�e LLJ
is
u
U
0 1.
-./
Ile
M L.LJ
Q'
Y
F-I
<
1
O 1
M I
U-) I
2
LU r
L-
is
rl
r-I
r-I
r-I
CD 3:
H <
w >
0
His
4-J W
IN
CD
0
0
0
L- 00 De
LA It
M ril
m
0)
m
m
00- t.0 >-
LL it
:R: W
jlc
r-4
r14
N
r14
0
LL
r-I
r-i
0001
I ;c
I
I
1
000
c
— —
—
—
— —
— —
CD r-I
is
1
0 1
0 1
M[
LM I
0
is
-r-
00
I'D
00
rl
N
*
4-J
it
M
M
r-I
4,
CL
II
is
CU LL
M
M
M
M
1
is
F-I
7 ic
0 1
0 1
0 1
0 1
Q1'.c
r-I
m
m
CD
r-I
m
w
4-JcLqc
w
w
w
0
0
0
r-I
j-
L. >
0
.
CD
00
Ic
W W
r is
k-D
0
1.0
0
r,
0
r-
LD
is
> —
Ln ic
00
00
00
00
CD
i,
r- LU
is
rlj
r1i
r\j
r1i
0
q,,
H
= -,%
H
H
r-I
r-I
is
1 u 1141
CD
—
—
—
—
— —
—
—
0
is
1 ir
0 10
0 10
0 10
CD I
—)00
r1i
4
0
m
m
-,I-
m
m
I'D
is
0
E-= -1
0
M
ro
0
Ln
m
.1
a) is
4-1
r is
0
r1i
rli
00
o
ill
rd
LLJ -x
CD
CD
r-I
rj
H
m
is
4-J
\i1
0
0
CD
CD
LL
i.
Ul
—j
M
M
ry)
rn
04-
r -I
w
CD
T1
T2
T3
50
R
SH
CD
Q
20080068 WM LAKE ELSINORE
100 YR
OFFSITE THIRD LINE
3000.0001286.810
3002.3901286.830
3020.4301287.010
3036.9601287.180
3036.9601287.180
1 4 1 .000
1.150
20080068 -THIRD -C -RIGHT
C RIGHT
1
1 .013
1 .013
1 .013
1
1.500 .000 .000
.0
1290.190
1287.180
.000 .00
Page 1
.000 .000 0
44.940 .000 0
.000 .000 0