Loading...
HomeMy WebLinkAboutFinal HydrologyHYDROLOGY STUDY WALMART South Corner of Cambern Ave. Lake Elsinore, California Prepared for: Walmart Stores, Inc. 2001 S.E. 10th Street, SWDC Bentonville, Arkansas 72716 t: 479.273.4000 Reviewed by: John Nourzad, PE f0reenberUFarrow 30 Executive Park, Suite 100 Irvine, California, 92614 t: 949.296.0450 f: 949.296.0479 Project No. 20080068.8 Prepared by: Date: 10/3/18 ohn Nou ad RCE# C46039 Exp. 12.31.2018 9 ESSIQN� Date Comments 02.16.18 Original 06.06.18 2nd Submittal 07.11.18 3rd Submittal 10.03.18 4'h Submittal 14011��/ No.. 46039 "' kE V. 12/31/18 l OF TABLE OF CONTENTS SECTIONS: I INTRODUCTION 1.1 PURPOSE 1.2 PROJECT DESCRIPTION II. FLOW VOLUMES 2.1 METHODOLOGY 2.2 DESIGN CRITERIA 2.3 DRAINAGE STRUCTURES III. SUMMARY APPENDICES: APPENDIX A: VICINITY MAP APPENDIX B: SOIL GROUP MAPS & STANDARD INTENSITY -DURATION CURVES DATA APPENDIX C: HYDROLOGY CALCULATIONS • CA RATIONAL METHOD POST DEVELOPMENT CALCULATIONS PER CIVILD • C.2 CATCH BASIN CALCULATIONS APPENDIX D: HYDROLOGY MAPS APPENDIX E: REFERENCE DOCUMENTS • OFFSITE DEXTER & THIRD STREET STORM DRAIN WSPGW CALCULATIONS 30 Executive Park Suite 100 f8reenberofarrew Irvine, .2 96.00 450450 9 949.2 www.greenbergfarrow.com -- We Are Global i SECTION I - INTRODUCTION 1.1 PURPOSE This report presents the hydrologic analysis for the proposed construction of the lots located at the south corner of Central Avenue and Cambern Avenue, in the City of Lake Elsinore, County of Riverside, State of California, The main objective of this report was to analyze the post construction "peak" run-off quantities for the proposed development. 1.2 PROJECT DESCRIPTION The project is located at the corner of Central Avenue and Cambern Avenue as shown in Appendix A. The existing 17.65 -acre site consists of a commercial parcel and four residential tracts. It slopes from a northwesterly to southeasterly direction at approximately 2% gradient. Cambern Avenue fronts the northeasterly side of the project site, which is a partially improved street. The existing street right-of-way half width, on the southwesterly side of the centerline of Cambern Avenue is approximately 30 feet. The proposed ultimate street half width right-of-way varies from 45 to 57 feet. Three natural drainage patterns exist on the site and collect along the southerly property line. The two easterly flow paths have combined about half way through the site creating a natural drainage channel and outlet into the adjacent property at the most southeasterly corner of the site. i The developed site will be a commercial retail shopping center consisting of a major retail building with three outparcels. The site will be graded to generally follow the existing condition drainage patterns to minimize adverse effects to the current topography and minimize the use of import soil. The majority of the site (Subarea 100) will drain to the Third Street storm drain, while the remainder (Subarea 200) will drain to the Cambern Avenue storm drain. Please see the Hydrology Maps in Appendix D for delineation. There will be no off-site runoff entering the project site. On-site drainage will be treated before it outlets to these storm drains. SECTION II - FLOW VOLUMES 2.1 METHODOLOGY This hydrology study was based upon the Riverside County Flood Control and Water Conservation District (RCi-C&WQM Hydrology Manual. dated April 1978. This manual allows the use of two methods: the Rational Method and the Synthetic Unit Hydrograph Method. 30 Executive Park Suite 100 10reenbergfarrow Wine, 949.2 .2 9261445096.00 www.greenbergfarrow.com We Are Global The Rational Method was used to determine peak flow rates for each tributary area for catch basins and pipe sizing to ensure that the capacity for the 100 -year storm event was met. Please see Appendix C for Riverside County Approved CivilD Bonadiman Software Calculations. See Appendix D. Hydrology Maps for an illustration of drainage patterns, tributary sub areas, and storm drain pipes to convey runoff to the storm drain in Third Street (Subarea 100) and the storm drain in Cambern Avenue (Subarea 200). Pre -development was not analyzed with the study. 2.2 DESIGN CRITERIA Design Storm: The 100 -year storm event was used for sizing the onsite storm drains. Soil Type: "B" (assumed for all areas). Rainfall Intensitk Rainfall intensity for on-site runoff was based on Riverside County Hydrology Manual (1978). Runoff Coefficients: A conservative on-site runoff coefficient of 0.90 was used for calculation of the post - developed runoff. 2.3 DRAINAGE STRUCTURES Proposed Cambern & Third Street Storm Drains The approved Third Street Channel Stage 2 storm drain designed by Michael Baker International (MBI) is proposed in Cambern Avenue and Third Street. Subarea 100 of the Walmart development is to outlet to the 36" stub of this storm drain in Third Street, while Subarea 200 will outlet to the 24" storm drain in Cambern Avenue. See the Post -Developed Hydrology Map for delineation of subareas. Runoff from the entire Walmart site is accounted for by the Stage 2 Third Street Channel. The Walmart development will discharge up to 50.59 cfs to the Third Street stub and 4.94 cfs to the Cambern stub under the 100 -year Rational Method storm event. 30 Executive Park #Greenbergfarrow 296.450 Irvine, CA 92614 949.296.0450 www.greenbergfarrow.com We Are Global __ ) SECTION III - SUMMARY The Rational Method was used to evaluate the hydraulic and hydrologic performance of the proposed retail center through the Soil Group and Intensity Data in Appendix B. Peak Runoff for the development was calculated and is summarized in the following table. Please see Appendices C & D for detailed calculations and locations of facilities. Offsite WSPGW calculations are included for reference in Appendix E — please see the Offsite Hydrology Study for more information. Rational Method 100 -Year Storm Event Post -Developed Peak Runoff To Third Street Line C Left To Cambern Line A To Third Street Line C (Right) Onsite 50.59 cfs Subarea 100 4.94 cfs Subarea 200 0 Offsite 7.32 cfs 3.22 cfs 1.15 cfs Total 57.91 cfs 8.16 cfs 1.15 cfs 30 Executive Park Suite 100 #Greenberghrrow Irvine,CA9 949.296.04500450 www.greenbergfarrow.com We Are Global APPENDIX A Vicinity Map 30 Executive Park Suite 100 GreenhergFarrow trvine,CA90450 www.greenberg(arrow.com We Are Global .� 74 15 9 WE P41 74 �q 74 q� LAKE ELSINORE SITE VICINITY MAP NO SCALE APPENDIX B Soil Group & Standard Intensity -Duration Curves Data 30 Executive Park Suite 100 GreenbergFarrow Irvine, CA 92614 949.296.04500450 www.greenberg(arrow.com We Are Global ♦ M -•U1M 401M MN NM U1r O 4m m d 10 PM r NA NN f 100 4&09p - I? 1V P09p- I?1V ..O PmU1fM P 1010 N-OMM . OPPm mP 1011 . f N Af MM MM M MM NN N N N NN N N N N N.•1r .• - -..-- -.-. .-. -- M 10 Ulmf N•••.N t h •••�NOU1O 10PN 10 .•. A MP VtN PMh Nm a.0.m 0w O NPhU1 f MN �.OP Pmm hf+ 10 U1 U1 ♦f MMNNN .-.OP a. 0.m mm M N N N N NN N N.•. •-• - -. -1-111- -1 - 1-111-- ---- UI 0h mP O.••N M t UI 101- mP ON d 10m O N f 100 C Mom= M-000 .•+ .••..•..••..••. .•+ .••..•..••..••. N N N N N M M M M M f f U1 in 10 10 r r m m r O < J O W Z • ) T W H � Q U W K P O < J W + W tY ) O W Z x O N H •-. W cx U < :1 Z 7 .. OI 10m 10 U1 .•. C 10m 101!1 1.11 NmhmN mdNNN 1.1.0 NOP PO NUf P ryPmmO M10 .-. 1(1 1.11 171 d MN... • • • • • Y 0 < r 0U1 ••+m U1N OmP U1 tMN� c ma! •.O 17 0: 1 Omh 1010 Ulf d MM • • • • • N.-..-. .-.- U W • • • • • . . . . • • • • • • . • . . . N ---- ----- w.-.. .-. «.-. Z Y .0 10 U1 U1 f f f d M M M MMM M M NNN N N NNN N N 1.11.•+ .•. .•+ .•. r..1+••. O W U1 f O10MO ... P f 1rP P1D f MN .-+O PP mh 101!11!1 f f MMN N.1.O o P PP m mm p 7 NNN 1.11.•• --.-..--. .-. .. -.... ...1- • ---- • • • • • 11 m O K 40 o MNf P1o0 r a N 1 OU1 O.••. d h.•. 10 .+AM O 10PM m M 010 N Pr 11 W 0: 0m NM:2 400 M N N d 10 PM f -.p h0 N M oM= o NM:2 0 d OM -MM R O < •I P 1 101 0: 10 U1 d 1 • 0 M 1 c Pmh 1010 M Uf U1 f fNoo M PPP mm d fM U110 W .. W M M M N N N NNN N .+ .-..-..-..-. .-..r ....r .. ..• .� .........• ti .-1 .• 11 = T f MMM M N NNN N N NNN N .•+ .••..••. •••..••. .•+ .•1 .• 1.11•. 1.11+ 1111-..r H O v7 W = a o v7 U1 10 r- mP O.�NM f U110h mP oN f 10m ON d 100 OU100O IAO UIOP O .-•. W �. 1.111.11 •-.1.11 1.111.11.1.1 •••. .••� NNN NN M MMMM d f U1M 1D 10r P- m m J Y Y U110r mP o.+NM d U110 r-mP oN d 10m ON f 10m OUZO m O n m U1 <� � 2 ••• 1.11 1.11 1.11 ••+ .•+ 1.11 1.11 •••� •••� N N N N N M M M M M d f U1 U1 10 1D A m m Q Z O x O = r O < J O W Z • ) T W H � Q U W K P O < J W + W tY ) O W Z x O N H •-. W cx U < :1 Z 7 .. OI 10m 10 U1 .•. K m m F-.•.0 mp7 d NN MM 'D ON 'Q 00 P P N 10 a 1111 1p 1p m. -•U1 oU1010M 171 d MN... • • • • • T o a h MOm10 fN.•.oP m1� 10 1711 fM N.•.o mm Ito: 0: X1011 U1 t ♦MMNN • • • • • N.-..-. .-.- U O W f ♦ 1 M MMM M M MMMMM NNNNN N ---- ----- w.-.. .-. «.-. Z .•+>- ♦ d 14 MM MMM MN N NNNN NNN N N N-1.11.+.• .•-. .•.-w- --..-. .- - O W U1 f O10MO ... P f 1rP P1D f MN .-+O PP mh 101!11!1 f f MMN N.1.O o P PP m mm p 7 NNN 1.11.•• --.-..--. .-. .. -.... ...1- • ---- • • • • • 11 m � K 40 o MNf P1o0 r a N 1 OU1 O.••. d h.•. 10 .+AM O 10PM m M 010 N Pr d W O: O f t d NNt 1pP MhNmM PN10010 -ma f mMm f o1� dN o C O< �. m 10 f M N••.p Pm m f -P- 1010 Uf U1 d fM 9p NNN-. .-.00 P P Pm m mm d fM U110 W •-• W M M M N N N NNN N .+ .-..-..-..-. .-..r ....r .. ..• .� .........• ti .-1 .• 11 = T M NNN N N N N 1111•. 1111•+ ..r 111-1 .........+ ... -. 1111• .r .r .+ .• .• .• H O v7 W Z IL o In U1 10 r- mP O.�NM f U110h mP oN f 10m ON d 100 OU100O IAO UIOP O W �. 1.111.11 •-.1.11 1.111.11.1.1 •••. .••� NNN NN M MMMM d f U1M 1D 10r P- m m J �� M Dr W 0 O••.NM. ♦ Uf 10hmP ONE 1Dm oNt 10m OUZO UIO U10 U1 OU1 Vl <� � 2 .r .•.r .a . ... ... ... .. ... NN N NN MMMMM d f UI U110 10 PA m m 7 .-r O x r O < J O W Z • ) T W H � Q U W K P O < J W + W tY ) O W Z x O N H •-. W cx U < :1 Z 7 .. OI 10m 10 U1 .•. tt Pr -10 ♦� U110 P 4p 000 ••f 10M NNM UlmN 0 f mP-O 1O 4a, f 00 171 d MN... • • • • • Y U O < o W f PU1NP PU1M 1 . OP m P.0 U1f M N.••. oP Pmm P 10 U1 t f MN NN.•. • • • • • N.-..-. .-.- Z .•+Y f ♦ 1 M MMM M M MMMMM NNNNN N ---- ----- w.-.. .-. «.-. W M f M.••. U1 U1 PNPm m P. -.f h.1• 1l1 U1h PN O f 10PMm U1 f O10MO ... P f 1rP P1D f MN .-+O PP mh 101!11!1 f f MMN N.1.O o P PP m mm in O NNN 1.11.•• --.-..--. .-. .. -.... ...1- • ---- • • • • • 11 U1 W K 40 o MNf P1o0 r a N 1 OU1 O.••. d h.•. 10 .+AM O 10PM m M 010 N Pr CL cr O< •01`7010.0 fMN.••.o PPm mP 1� 101A f f 1'11'1 NNN .•.00 P P mmm1.-P W .ti Y M.M.O IAO m OU1 IA • • • • • • • • • • • • • • • • • • • • • • • • • d fM U110 10h h mm M M M N N N NNN N .+ .-..-..-..-. .-..r ....r .. ..• .� .........• ti .-1 .• 11 = W O v7 a O W J FH U1 10 r- mP O.�NM f U110h mP oN f 10m ON d 100 OU100O IAO UIOP 0 < K Z �. 1.111.11 •-.1.11 1.111.11.1.1 •••. .••� NNN NN M MMMM d f U1M 1D 10r P- m m O S r O < J O W Z • ) T W H � Q U W K P O < J W + W tY ) O W Z x O N H •-. W cx U < :1 Z 7 .. OI 10m 10 U1 .•. Nmr mN m f NNN M1D NOP PON UIP NPmmo M10 .-.U1 .-. P- 0111 .••m • • • • • U1N Omh • • • • • 171 d MN... • • • • • Omr.O f • • • • • M il) .O • Omh 10.0 111 f d MM 1010 U1 U1 d f d dmm MMM MM MN NNN • • • • NNNNN • • • • • N.-..-. .-.- • • • • • .-..-. .. .-. .-. O M f M.••. U1 U1 PNPm m P. -.f h.1• 1l1 U1h PN 10 .. 10Nm f 10PMm U1 f O10MO ... P f 1rP P1D f MN .-+O PP mh 101!11!1 f f MMN N.1.O o P PP m mm d MM MN NNNNN NNN 1.11.•• --.-..--. .-. .. -.... ...1- • ---- • • • • • 11 W CL 0 U110 hm P ON f 10m ON d tom M.M.O IAO m OU1 IA 1.1.11^111••.-. .11..1+111..1..••. NNNNN MMMMM d fM U110 10h h mm RCFC & WCD HYDROLOGY JMANUA►_ STANDARD INTENSITY - DURATION CURVES DATA PLATE D-4.1 (2 of 6) KNJ1a.-4-Us]:FA, 1 Rational Method Post Development Calculations 30 Executive Park Suite 100 10reenberuhrrow twine, CA 92614 sas.zss.0450oaso www.greenbergfarrow.com We Are Global 100YRPOSTI MAJOR WATERSHED BASIN 100 Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 09/25/18 File:100yrpostl.out --------------------------_------------------------------------------------ ********* Hydrology study control Information English (in -lb) units used in input data file Program License Serial Number 6215 ------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity -duration curves data (Plate D-4.1) For the [ Elsinore-wildomar ] area used. 10 year storm 10 minute intensity = 2.320(In/Hr) 10 year storm 60 minute intensity = 0.980(In/Hr) 100 year storm 10 minute intensity = 3.540(In/Hr) 100 year storm 60 minute intensity = 1.500(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.500(In/Hr) Slope of intensity duration curve = 0.4800 ++++++++++-r+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION *•* Initial area flow distance = 373.000(Ft.) Top (of initial area) elevation = 1316.000(Ft.) Bottom (of initial area) elevation = 1306.000(Ft.) Difference in elevation = 10.000(Ft.) slope = 0.02681 s(percent)= 2.68 TC = k(0.300)*[(lengthA3)/(elevation change)]A0.2 Initial area time of concentration = 6.609 min. Rainfall intensity = 4.324(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.882 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 6.640(CFS) Total initial stream area = 1.740(AC.) Pervious area fraction = 0.100 -F++++.......-}...-I-....++.++++.-F.++.....++++++++++++++++++++•Ft++++++t++t+ Process from Point/Station 102.000 to Point/Station 103.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** upstream point/station elevation = 1300.000(Ft.) Downstream point/station elevation = 1299.600(Ft.) Pipe length = 95.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 6.640(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 6.640(CFS) Normal flow depth in pipe = 13.34(In.) Flow top width inside pipe = 15.77(In.) Critical Depth = 11.97(In.) Pipe flow velocity = 4.73(Ft/s) Travel time through pipe = 0.33 min. Page 1 100YRPOSTI Time of concentration (TC) = 6.94 min. .... ............. t.... -F -F.. i- ti'.... -F -F -I . i --F.. f....++++++++++++++++++++++t Process from Point/Station 104.000 to Point/Station 103.000 **** SUBAREA FLOW ADDITION ''* COMMERCIAL subarea type Runoff coefficient = 0.882 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 6.94 min. Rainfall intensity = 4.223(In/Hr) for a 100.0 year storm Subarea runoff = 1.527(CFS) for 0.410(Ac.) Total runoff = 8.167(CFS) Total area = 2.150(Ac.) . t **.* *...... .....$-Ft...........-1 .... t++f ........ .F+................. Process from Point/Station 103.000 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) upstream point/station elevation = 1299.600(Ft.) Downstream point/station elevation = 1299.300(Ft.) Pipe length = 45.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 8.167(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 8.167(CFS) Normal flow depth in pipe = 13.10(In.) Flow top width inside pipe = 16.02(In.) Critical Depth = 13.29(In.) Pipe flow velocity = 5.93(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 7.07 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 105.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 stream flow area = 2.150(Ac.) Runoff from this stream = 8.167(CFS) Time of concentration = 7.07 min. Rainfall intensity = 4.187(In/Hr) +++++++++++++++++#++++++.....++++++++++++.....+++t++++t+++++++++++++++ Process from Point/Station 106.000 to Point/Station 107.000 **** INITIAL AREA EVALUATION ''°''°'' * Initial area flow distance = 265.000(Ft.) Top (of initial area) elevation = 1307.700(Ft.) Bottom (of initial area) elevation = 1302.100(Ft.) Difference in elevation = 5.600(Ft.) slope = 0.02113 s(percent)= 2.11 TC = k(0.300)*[(lengthA3)/(elevation change)]A0.2 Initial area time of concentration = 6.045 min. Rainfall intensity = 4.514(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.883 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 2.710(CFS) Total initial stream area = 0.680(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 109.000 ''"'"' * PIPEFLOW TRAVEL TIME (Program estimated size) ''°''"'`'` Page 100YRPOSTI upstream point/station elevation = 1298.000(Ft.) Downstream point/station elevation = 1297.200(Ft.) Pipe length = 130.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 2.710(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 2.710(CFS) Normal flow depth in pipe = 8.86(In.) Flow top width inside pipe = 10.55(In.) Critical Depth = 8.47(In.) Pipe flow velocity = 4.36(Ft/s) Travel time through pipe = 0.50 min. Time of concentration (TC) = 6.54 min. ++ i.. ... ++++.++tt++i-... +++tt++i-++++i-.....++++++++++ h++++ h....++++ i ++++ Process from Point/Station 108.000 to Point/Station 109.000 * SUBAREA FLOW ADDITION *'' ** COMMERCIAL subarea type Runoff Coefficient = 0.883 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 6.54 min. Rainfall intensity = 4.346(In/Hr) for a 100.0 year storm Subarea runoff = 2.224(CFS) for 0.580(AC.) Total runoff = 4.935(CFS) Total area = 1.260(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 109.000 to Point/Station 105.000 'r'°** PIPEFLOW TRAVEL TIME (Program estimated size) **°'* upstream point/station elevation = 1297.100(Ft.) Downstream point/station elevation = 1296.800(Ft.) Pipe length = 69.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 4.935(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 4.935(CFS) Normal flow depth in pipe = 10.65(In.) Flow top width inside pipe = 17.69(In.) Critical Depth = 10.25(In.) Pipe flow velocity = 4.53(Ft/s) Travel time through pipe = 0.25 min. Time of concentration (TC) = 6.80 min. +++++++++++++++++++++++++++++++++++++++++++ +++4+++++++++++++++++++++++ Process from Point/Station 109.000 to Point/Station 105.000 :;*** CONFLUENCE OF MINOR STREAMS :;*** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.260(Ac.) Runoff from this stream = 4.935(CFS) Time of concentration = 6.80 min. Rainfall intensity = 4.267(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 8.167 7.07 4.187 2 4.935 6.80 4.267 Largest stream flow has longer time of concentration QP = 8.167 + sum of Qb Ia/Ib 4.935 0.981 = 4.842 } Qp = 13.009 Total of 2 streams to confluence: Flow rates before confluence point: 8.167 4.935 Area of streams before confluence: Page 3 100YRPOSTI 2.150 1.260 Results of confluence: Total flow rate = 13.009(CFS) Time of concentration = 7.070 min. Effective stream area after confluence = 3.410(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 110.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) ** ter upstream point/station elevation = 1296.600(Ft.) Downstream point/station elevation = 1295.400(Ft.) Pipe length = 228.00(Ft.) manning's N = 0.012 No. of pipes = 1 Required pipe flow = 13.009(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 13.009(CFS) Normal flow depth in pipe = 15.25(In.) Flow top width inside pipe = 23.11(In.) Critical Depth = 15.58(In.) Pipe flow velocity = 6.18(Ft/s) Travel time through pipe = 0.61 min. Time of concentration (TC) = 7.69 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.000 to Point/Station 110.000 **** SUBAREA FLOW ADDITION '' *** COMMERCIAL subarea type Runoff Coefficient = 0.881 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 7.69 min. Rainfall intensity = 4.022(In/Hr) for a 100.0 year storm Subarea runoff = 11.345(CFS) for 3.200(Ac.) Total runoff = 24.354(CFS) Total area = 6.610(Ac.) +++++++-i..+++++++++++++a-++++a-++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 112.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** upstream point/station elevation = 1295.400(Ft.) Downstream point/station elevation = 1294.200(Ft.) Pipe length = 242.00(Ft.) manning's N = 0.012 No. of pipes = 1 Required pipe flow = 24.354(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 24.354(CF5) Normal flow depth in pipe = 22.97(In.) Flow top width inside pipe = 19.25(In.) Critical Depth = 20.69(In.) Pipe flow velocity = 6.76(Ft/s) Travel time through pipe = 0.60 min. Time of concentration (TC) = 8.28 min. ++t+++4 ......... fill! ..+++++++++++++++++++++++++++++++t++t+++++++++*+. Process from Point/Station 112.000 to Point/station 115.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) upstream point/station elevation = 1294.000(Ft.) Downstream point/station elevation = 1292.000(Ft.) Pipe length = 201.00(Ft.) manning's N = 0.012 No. of pipes = 1 Required pipe flow = 24.354(CFS) Nearest computed pipe diameter = 24.00(In.) calculated individual pipe flow = 24.354(CFS) Normal flow depth in pipe = 19.59(In.) Flow top width inside pipe = 18.58(In.) Critical Depth = 20.94(In.) Pipe flow velocity = 8.87(Ft/s) Travel time through pipe = 0.38 min. Time of concentration (TC) = 8.66 min. Page 4 100YRPOSTI ++t+++++++t++t+++ti-++++++++++++++++++++++++++++++++++++++++i-++++++++++ Process from Point/Station 116.000 to Point/Station 115.000 ••• ••* SUBAREA FLOW ADDITION **** COMMERCIAL subarea type Runoff Coefficient = 0.881 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 8.66 min. Rainfall intensity = 3.798(In/Hr) for a 100.0 year storm Subarea runoff = 3.478(CFS) for 1.040(Ac.) Total runoff = 27.833(CFS) Total area = 7.650(Ac.) ++f++++++++++++t+t++++++++++++++.++++++tt++++++f++++++t++++f+++t++++++ Process from Point/Station 117.000 to Point/station 115.000 *''** SUBAREA FLOW ADDITION **** COMMERCIAL subarea type Runoff Coefficient = 0.881 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious Time of concentration = 8.66 min. Rainfall intensity = 3.798(In/Hr) for Subarea runoff = 7.057(CFS) for 2 Total runoff = 34.890(CFS) Total area fraction = 0.900 100.0 year storm 110(AC.) 9.760(Ac.) +++++++++.+++++-r+++-r+++++++++-r+.++-r+++++++++-r+++++++++-r.........++++++ Process from Point/Station 118.000 to Point/Station 115.000 *''`** SUBAREA FLOW ADDITION **** COMMERCIAL subarea type Runoff Coefficient = 0.881 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 8.66 min. Rainfall intensity = 3.798(In/Hr) for a 100.0 year storm subarea runoff = 0.903(CFS) for 0.270(Ac.) Total runoff = 35.793(CFS) Total area = 10.030(AC.) +++++++++++++++++++++++++++++++++++++• f•++++++++++++++++++++++++++++++++ Process from Point/Station 115.000 to Point/Station 119.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** upstream point/station elevation = 1291.900(Ft.) Downstream point/station elevation = 1288.900(Ft.) Pipe length = 337.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 35.793(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 35.793(CFS) Normal flow depth in pipe = 21.33(In.) Flow top width inside pipe = 27.20(In.) Critical Depth = 24.35(In.) Pipe flow velocity = 9.59(Ft/s) Travel time through pipe = 0.59 min. Time of concentration (TC) = 9.25 min. +++++++++++++++++++++++++++++++++t++++t+++++++++++++++++++++++-r+++++++ Process from Point/Station 120.000 to Point/station 119.000 ** SUBAREA FLOW ADDITION **** COMMERCIAL subarea type Page 5 100YRPOSTI Runoff Coefficient = 0.880 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration - 9.25 min. Rainfall intensity = 3.681(In/Hr) for a 100.0 year storm Subarea runoff = 1.361(CFS) for 0.420(Ac.) Total runoff = 37.154(CFS) Total area = 10.450(Ac.) ++++++++++++++++++++++++++. 1 +4-++++++++++++++++++++++++++++++++++ Process from Point/Station 121.000 to Point/Station 119.000 ••** SUBAREA FLOW ADDITION COMMERCIAL subarea type Runoff Coefficient = 0.880 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 9.25 min. Rainfall intensity = 3.681(In/Hr) for a 100.0 year storm subarea runoff = 0.972(CFS) for 0.300(AC.) Total runoff = 38.125(CFS) Total area = 10.750(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 122.000 to Point/Station 119.000 SUBAREA FLOW ADDITION ***it COMMERCIAL subarea type Runoff Coefficient = 0.880 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 9.25 min. Rainfall intensity = 3.681(In/Hr) for a 100.0 year storm Subarea runoff = 3.142(CFS) for 0.970(Ac.) Total runoff = 41.268(CFS) Total area = 11.720(AC.) +++++++++++++++++++++++++++++++...4.}++++++++++++++++++++t..fit...f++.++. Process from Point/Station 119.000 to Point/Station 123.000 PIPEFLOW TRAVEL TIME (Program estimated size) **''`* Upstream point/station elevation = 1288.800(Ft.) Downstream point/station elevation = 1287.500(Ft.) Pipe length = 137.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 41.268(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 41.268(CFS) Normal flow depth in pipe = 23.44(In.) Flow top width inside pipe = 24.80(In.) Critical Depth = 25.85(In.) Pipe flow velocity = 10.04(Ft/5) Travel time through pipe = 0.23 min. Time of concentration (TC) = 9.47 min. ++++i-i-+.-h++++.+++++-f+.+++.+++++tt+ttttt.t.......................i i h+++ Process from Point/Station 119.000 to Point/Station 123.000 CONFLUENCE OF MINOR STREAMS Along Main Stream number: 1 in normal stream number 1 stream flow area = 11.720(AC.) Runoff from this stream = 41.268(CFS) Time of concentration = 9.47 min. Rainfall intensity = 3.638(In/Hr) Page 6 100YRPOSTI +++++i-........ I-....+++++++.-F+++++.++.++i-+-I ....+.....++.....i -+++{ +i-++++ Process from Point/Station 124.000 to Point/station 125.000 *** INITIAL AREA EVALUATION ''°''°** Initial area flow distance = 354.000(Ft.) Top (of initial area) elevation = 1305.500(Ft.) Bottom (of initial area) elevation = 1303.000(Ft.) Difference in elevation = 2.500(Ft.) Slope = 0.00706 s(percent)= 0.71 TC = k(0.300)*[(1engthA3)/(elevation change)]A0.2 Initial area time of concentration = 8.452 min. Rainfall intensity = 3.843(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.881 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious Initial subarea runoff = 5.483(CFS) Total initial stream area = 1.620(Ac Pervious area fraction = 0.100 fraction = 0.900 +++++++-F+.++.....++f++++++++++++++++++++++++++++-1-+++-t-++++++i-#++++++++++ Process from Point/Station 125.000 to Point/Station 126.000 ••*** PIPEFLOW TRAVEL TIME (Program estimated size) i't*** Upstream point/station elevation = 1297.000(Ft.) Downstream point/station elevation = 1295.700(Ft.) Pipe length = 264.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 5.483(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 5.483(CFS) Normal flow depth in pipe = 10.96(In.) Flow top width inside pipe = 17.57(In.) Critical Depth = 10.84(In.) Pipe flow velocity = 4.87(Ft/s) Travel time through pipe = 0.90 min. Time of concentration (TC) = 9.36 min. Process from Point/Station 127.000 to Point/Station 126.000 ''"'"' * SUBAREA FLOW ADDITION **** COMMERCIAL subarea type Runoff coefficient = 0.880 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 9.36 min. Rainfall intensity = 3.660(In/Hr) for a 100.0 year storm subarea runoff = 2.512(CFS) for 0.780(Ac.) Total runoff = 7.995(CFS) Total area = 2.400(Ac.) +++++++++++++++++*+.+.++++++*+++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 126.000 to Point/Station 123.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) Upstream point/station elevation = 1289.700(Ft.) Downstream point/station elevation = 1287.500(Ft.) Pipe length = 438.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 7.995(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 7.995(CFS) Normal flow depth in pipe = 14.63(In.) Flow top width inside pipe = 14.05(In.) Critical Depth = 13.15(In.) Pipe flow velocity = 5.20(Ft/s) Travel time through pipe = 1.40 min. Time of concentration (TC) = 10.76 min. Page 7 100YRPOSTI +++++++++++++++++++++++++++++++++++++++++++.*++++++++++.+t+++.++-I-+++++ Process from Point/Station 131.000 to Point/Station 123.000 **** SUBAREA FLOW ADDITION **** COMMERCIAL subarea type Runoff Coefficient = 0.879 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious Time of concentration = 10.76 min. fraction = 0.900 Rainfall intensity = 3.423(In/Hr) for a 100.0 year storm subarea runoff = 2.587(CFS) for 0.860(Ac.) Total runoff = 10.582(CFS) Total area = 3.260(AC.) ++++++t+++++++++++++++++++++++fi++fi++++++++++++++++++++++++++++++++++++ Process from Point/Station 126.000 to Point/Station 123.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 1 in normal stream number 2 Stream flow area = 3.260(Ac.) Runoff from this stream = 10.582(CFS) Time of concentration = 10.76 min. Rainfall intensity = 3.423(In/Hr) summary of stream data: Stream Flow rate TC No. (CFS) (min) 1 41.268 9.47 2 10.582 10.76 Largest stream flow has longer Qp = 41.268 + sum of Qa Tb/Ta 10.582 * 0.881 = Qp = 50.586 Rainfall Intensity (In/Hr) 3.638 3.423 or shorter time of concentration 9.318 Total of 2 streams to confluence: Flow rates before confluence point: 41.268 10.582 Area of streams before confluence: 11.720 3.260 Results of confluence: Total flow rate = 50.586(CFS) Time of concentration = 9.473 min. Effective stream area after confluence = 14.980(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.+++.+++.+++ Process from Point/Station 123.000 to Point/station 100.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** upstream point/station elevation = 1287.300(Ft.) Downstream point/station elevation = 1287.000(Ft.) Pipe length = 38.00(Ft.) Manning'$ N = 0.012 No. of pipes = 1 Required pipe flow = 50.586(CFS) Dearest computed pipe diameter = 33.00(in.) calculated individual pipe flow = 50.586(CFS) Normal flow depth in pipe = 26.86(In.) Flow top width inside pipe = 25.69(In.) Critical Depth = 28.08(in.) Pipe flow velocity = 9,77(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 9.54 min. ++f+++++++++tf+++i,++-H++.....-1......4.....+++++++++++++++-P+.... -+++++++ Process from Point/Station 129.000 to Point/Station 128.000 **** SUBAREA FLOW ADDITION **** COMMERCIAL subarea type Runoff Coefficient = 0.880 Decimal fraction soil group A = 0.000 Page 8 100YRPOSTI Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 9.54 min. Rainfall intensity = 3.626(In/Hr) for a 100.0 year storm Subarea runoff = 7.115(CFS) for 2.230(Ac.) Total runoff = 57.701(CFS) Total area = 17.210(Ac.) ++*+*++++++t.....++++.++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 100.000 *PIPEFLOW TRAVEL TIME (Program estimated size) ,,*** upstream point/station elevation = 1286.460(Ft.) Downstream point/station elevation = 1286.370(Ft.) Pipe length = 1.80(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 57.701(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 57.701(CFS) Normal flow depth in pipe = 17.77(In.) Flow top width inside pipe = 25.62(In.) Critical depth could not be calculated. Pipe flow velocity = 20.81(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 9.54 min. End of computations, total study area = 17.21 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 56.0 Page 9 lOOYRPOSTI MAJOR WATERSHED BASIN 200 Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 09/25/18 File:100YRPOST1.out ------------------------------------------------------------------ .;,`,;,',.r,;*** Hydrology study Control Information English (in -lb) units used in input data file ------------------------------------------------------------------------ Program License serial Number 6215 Rational ^method ~Hydrology �Program based on^~ ^^ Riverside County Flood Control & Water Conservation District 1978 hydrology manual storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity -duration curves data (Plate D-4.1) For the [ Elsinore-wildomar ] area used. 10 year storm 10 minute intensity = 2.320(In/Hr) 10 year storm 60 minute intensity = 0.980(In/Hr) 100 year storm 10 minute intensity = 3.540(In/Hr) 100 year storm 60 minute intensity = 1.500(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.500(In/Hr) slope of intensity duration curve = 0.4800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 201.000 to Point/Station 202.000 **** INITIAL AREA EVALUATION :;*:;* Initial area flow distance = 379.000(Ft.) Top (of initial area) elevation = 1312.000(Ft.) Bottom (of initial area) elevation = 1301.400(Ft.) Difference in elevation = 10.600(Ft.) Slope = 0.02797 s(percent)= 2.80 TC = k(0.300)*[(lengthA3)/(elevation change)]A0.2 Initial area time of concentration = 6.595 min. Rainfall intensity = 4.329(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.882 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 3.171(CFS) Total initial stream area = 0.830(Ac.) Pervious area fraction = 0.100 +++++++++++!i i i T+ H r i-+++++++++-h++-h+++ i i i+ d i h h ...+++-.-h++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 203.000 *** PIPEFLOW TRAVEL TIME (Program estimated size) ''"'"'* Upstream point/station elevation = 1298.700(Ft.) Downstream point/station elevation = 1298.400(Ft.) Pipe length = 106.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 3.171(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 3.171(CFS) Normal flow depth in pipe = 10.64(In.) Flow top width inside pipe = 13.62(In.) Critical Depth = 8.60(In.) Pipe flow velocity = 3.41(Ft/s) Travel time through pipe = 0.52 min. Page 1 100YRPOSTI Time of concentration (TC) = 7.11 min. Process from Point/Station 204.000 to Point/Station 203.000 ''* SUBAREA FLOW ADDITION **** COMMERCIAL subarea type Runoff Coefficient = 0.882 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 7.11 min. Rainfall intensity = 4.174(In/Hr) for a 100.0 year storm Subarea runoff = 1.767(CFS) for 0.480(Ac.) Total runoff = 4.938(CFS) Total area = 1.310(Ac.) +t+++++++++++++++++++++++++++++++++++++++++++++++t++++++++++++++++++++ Process from Point/station 203.000 to Point/Station 200.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) *••** Upstream point/station elevation = 1298.400(Ft.) Downstream point/station elevation = 1297.700(Ft.) Pipe length = 214.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 4.938(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 4.938(CFS) Normal flow depth in pipe = 11.72(In.) Flow top width inside pipe = 17.16(In.) Critical Depth = 10.25(In.) Pipe flow velocity = 4.05(Ft/s) Travel time through pipe = 0.88 min. Time of concentration (TC) = 7.99 min. End of computations, total study area = 1.31 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 56.0 Page 2 APPENDIX C.2 Catch Basin Calculations 30 Executive Park Suite 100 / Greenberg Farrow Irvine CA 92614 949.296.0450 www.greenberg(arrow.com We Are Global Inlet Report Hydraflow Express Extension for Autodesk@ AutoCAD® Civil 3D® by Autodesk, Inc. Wednesday, Jun 6 2018 -104 Curb Inlet Calculations Location = Sag Compute by: Known Q Curb Length (ft) = 3.50 Q (cfs) = 1.22 Throat Height (in) = 4.00 Grate Area (sqft) _ -0- Highlighted Grate Width (ft) _ -0- Q Total (cfs) = 1.22 Grate Length (ft) = -0- Q Capt (cfs) = 1.22 Q Bypass (cfs) _ -0- Gutter Depth at Inlet (in) = 2.86 Slope, Sw (ft/ft) = 0.083 Efficiency (%) = 100 Slope, Sx (ft/ft) = 0.025 Gutter Spread (ft) = 6.04 Local Depr (in) _ -0- Gutter Vel (ft/s) _ -0- Gutter Width (ft) = 1.50 Bypass Spread (ft) _ -0- Gutter Slope (%) _ -0- Bypass Depth (in) _ -0- Gutter n -value = -0- ll, )ns In feet Inlet Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3DO by Autodesk, Inc. Wednesday, Jun 6 2018 -107 Curb Inlet Calculations Location = Sag Compute by: Known Q Curb Length (ft) = 14.00 Q (cfs) = 5.80 Throat Height (in) = 4.00 Grate Area (sqft) = -0- Highlighted Grate Width (ft) _ -0- Q Total (cfs) = 5.80 Grate Length (ft) _ -0- Q Capt (cfs) 5.80 Q Bypass (cfs) = -0- Gutter Depth at Inlet (in) = 3.20 Slope, Sw (ft/ft) = 0.083 Efficiency (%) = 100 Slope, Sx (ft/ft) = 0.018 Gutter Spread (ft) = 9.42 Local Depr (in) _ -0- Gutter Vel (ft/s) = -0- Gutter Width (ft) = 1.50 Bypass Spread (ft) _ -0- Gutter Slope (%) _ -0- Bypass Depth (in) _ -0- Gutter n -value = -0- •ii• n in Fed u 27 _ Inlet Report Hydraflow Express Extension for Autodesk@ AutoCAD® Civil 3D@ by Autodesk, Inc. )B-202 (2 EA) Curb Inlet Location Curb Length (ft) Throat Height (in) Grate Area (sqft) Grate Width (ft) Grate Length (ft) Gutter Slope, Sw (ft/ft) Slope, Sx (ft/ft) Local Depr (in) Gutter Width (ft) Gutter Slope (%) Gutter n -value 'Ions in fed = On grade = 7.50 = 4.00 _ -0- -0- -0- = 0- -0- -0- = 0.083 = 0.025 _ -0- 1.50 = 3.08 = 0.016 013 tl 66 Wednesday, Jun 6 2018 Calculations Compute by: Known Q Q (cfs) = 0.31 Highlighted Q Total (cfs) = 0.31 Q Capt (cfs) = 0.31 Q Bypass (cfs) _ -0- Depth at Inlet (in) = 1.54 Efficiency (%) = 100 Gutter Spread (ft) = 1.66 Gutter Vel (ft/s) = 3.11 Bypass Spread (ft) _ -0- Bypass Depth (in) _ -0- Inlet Report Hydraflow Express Extension for Autodesk® AutoCAD@ Civil 3DB by Autodesk, Inc. Tuesday, Jul 10 2018 ')B-302 Curb Inlet Calculations Location = Sag Compute by: Known Q Curb Length (ft) = 7..00 Q (cfs) = 2.44 Throat Height (in) = 4..00 Grate Area (sqft) = -0- Highlighted Grate Width (ft) = -0- Q Total (cfs) = 2.44 Grate Length (ft) = -0- Q Capt (cfs) = 2.44 Q Bypass (cfs) = -0- Gutter Depth at Inlet (in) = 2.86 Slope, Sw (ft/ft) = 0.020 Efficiency (%) = 100 Slope, Sx (ft/ft) = 0.020 Gutter Spread (ft) = 11.90 Local Depr (in) = -0- Gutter Vel (ft/s) = -0- Gutter Width (ft) = 1.50 Bypass Spread (ft) = -0- Gutter Slope (%) = -0- Bypass Depth (in) = -0- Gutter n -value = -0- All, )ons in fed f I � J Inlet Report Hydraflow Express Extension for Autodesk@ AutoCAD® Civil 3D@ by Autodesk, Inc. ')B-401 Curb Inlet Calculations Location = Sag Compute by: Curb Length (ft) = 14.00 Q (cfs) Throat Height (in) = 4.00 Grate Area (sqft) = -0- Highlighted Grate Width (ft) _ -0- Q Total (cfs) Grate Length (ft) _ -0- Q Capt (cfs) Q Bypass (cfs) Gutter Depth at Inlet (in) Slope, Sw (ft/ft) = 0.020 Efficiency (%) Slope, Sx (ft/ft) = 0.030 Gutter Spread (ft) Local Depr (in) = -0- Gutter Vel (ft/s) Gutter Width (ft) = 1.50 Bypass Spread (ft) Gutter Slope (%) = -0- Bypass Depth (in) Gutter n -value = -0- ns in feet .M ... ...__. __.. ..—--- -.-... .......- ...._�...W._.. 0 S• r II } AM l Tuesday, Oct 2 2018 Known Q = 11.35 = 11.35 = 11.35 _ -0- 5.01 = 100 14.43 -0- -0- -0- APPENDIX D Hydrology Maps 30 Executive Park Suits 100 fOreenberoFarrow irvine9 CA 9 ses.29s.0450oaso www.greenberglarrow.com We Are Global 101 ~'� \ �' 204 125 \ 1297 127 0.78 CB4 -101 I 1 l ` I '" " r'`� ♦ _203: t LOQ 1 104 � ��� } , � - 1 CB�i I ^� 0.41 C 20 --�-� ._ ....., .i �♦ \ .r... » » �°"� ,� ,f 1 ' X 12» O t t 3� X36 SQ. G TE i I f I f \-- 2 02 - I I 1 _ oil Wwo 12'X1G$-1 W- 0 .--' ♦ 0.83 ` . :' ti" J I I 'E - I f� SQ. TECB`RER SPPWC STD. ! I I I24 r f O{ 1 O_ p C l 4�W-7') 111 ♦ \ 4 �� ■ _r ■ ■ ■ _� ■ _}� ■ _� ■_! -. f \ I ,� 320_ -- _ �PRO�OSY—BUILDINdD ` I 261 \" w — I 131 I ' X/"j 2»X12»O % `_O a` ~� O�0.86 CB -203 \"'! '� CB -401 1`300, 3� 36 GRATE SQ. 103 / C 0 1 W i I - - 12" *' CB PER SPPWC STD. -' '' •. ,r r` "' ' ' ` II 102 SQ' G ) 1.74 f K 112 f l 122 I 1 O B- o a 1;.,.' 1.04 I I UTLO 12'X » _ ...__ - — - =----- -- ---- - j \ 0.9 III I Wl II - 105 SQ. G --� - 1 ,, I II _ I 100 -201 CB-3�'I_" --ft�/ � r �'I I li 14.98* g:. PERS 58 ,t»X12 , " ' r.'.::;:: P r 1 / l r - i 3� 3 2 W=7 0 ✓ SQ. GRIT � `� 12» R �� (At - DRAIN WIN 1300 109 1»X12» O 4 O O ° ` .cB- ,..2/SQG36» S RATE11I0 I I I , I I 1 201 ,2.11 ♦ItY 1 12 S � `� I l � � '' I ..-- tf ' -- ..,,t r \ \ '=,�T"r•�f' 0.30 It I cB-302 118 120 � �� � `� I I 1 107 -` ✓ - ♦ CB PER SP C STD. 1300 0, 27 _ /- -�' 0.42 --1305- 0.68 B .` . 300-3 ( -14') t I \101 ` ✓, �` I Er 1I i l,.■ - ti -' 115 I I I B-104 119 CB -103 I I , I I` ti s'� I CBS PE �SPPW3 24"�X24» x I -. -CB-105 5Q. G{ATE \ ' _-a2-"Xt2- _ - I ISTD. 300,) o ( -- 1 SQ. GRATE _ -__ - -,I I \ I III III I I ? -'____________________--___---__-_-______ ;�_____ I11 V I IIII\I�III{lily � ,� � -�-i II F I I I I I I I I ► a I fi ��___—__...---.__________________ I I I I:� �.-1295,-7 - I I I W1 I V I I I ISI III I I I _ o¢ f,-....; ► 1 a x - a 1 I I I � _ —� �, ,- \}€ 1 I Ii IIIIII -__ ` I I IIII II�III IIII I SIX — X'\ _ I ,-�£ ill _ IIIIIIIIIIIIIIItIII VIII I I I� 1 I I , �,�� � rl � �___ S �...,..� � ,� ._ O `^wf �,—..''" j � � III : I ; : I I I l v l t l ' � I I ' I l I I 1 , I , d I I 1 ► A I r . �' III fk�� LOT 6 III x f I '� i ' jj" a ( I 1 1 1 /M- -'-. -' ■� =_=___ its ijT� /- ,j� �j I� / j � i I I �� � \ .,� x j� �( � '. w/ _ ✓^` "' r, 1 I i fi % / 1 � j l � —4-' f 1 x 77 WW D X°X T/E R r , _ - 4 it �- , 1 P --IJ. / ' -- --12 0- -- .:_. — -_. _ , � f � � � � j f j -- '� `\� �\ I � GRAPHIC SCALE v} I � / ® _ I EXISTING 30" ,� %. _ . ~- I I I - - Ix X 0 30 60 i � .. j RM DRA N ` w .. ..1 ti �°� ��`�; - y' k § \ V>` / IN FEET y 1 inch = 60 ft. ..,._.-.. � �° � � I i 4 , � i t � '� .`.! \°`.•v.� � i '',,�� �� \Iia..``,, `` I 1 s 4 ca � � � r- .,.'.`-----'-"'1 I 1....t � 1 1 Know what's below. ? I-> 0111 before you dig. MARK REVISIONS THESE PLANS HAVE BEEN REVIEWED FOR COMPLIANCE WITH THE APPROPRIATE CONDITIONS PREPARED BY: SEAL APPR. DATE OF DEVELOPMENT AND/OR CITY AND STATE LAWS, AND A PERMIT MAY BE ISSUED.30 Executive Park, Suite 100 ne, CA 92614 GreenhergForrOW t: 949 296 04501rf X949 296 0479 BRAD FACRELL RCE 43920 CITY ENGINEER DATE JOHN NOURZAD, RCE No. C46039 DATE N Mvv/� No. 46039 7° ♦ Exp. 12/31/18 �ql CIV11- F 4F CAu� BENCHMARK: SITE LOCATION MAP NOT TO SCALE LEGEND 100 MAJOR WATERSHED NODE - AREA IN ACRES 6.65 * DENOTES TOTAL AREA SUBAREA WATERSHED NODE 1.24 -------- AREA IN ACRES �■ ■ �� HYDROLOGIC MAJOR WATERSHED BOUNDARY -f- - 1310 ­1310— CB-101 •- -1310- --- - CB -101 SCALE: 1" _ 60' DRAWN: NB DATE: CHECKED: September 27, 2018 JP HYDROLOGIC SUBAREA WATERSHED BOUNDARY FLOWLINE STORM PIPE FLOW DIRECTION PROPOSED MAJOR CONTOUR PROPOSED MINOR CONTOUR EXISTING MAJOR CONTOUR EXISTING MINOR CONTOUR OFFSITE HYDROLOGIC WATERSHED BOUNDARY CATCH BASIN NUMBER NOT FOR CONSTRUCTION CITY OF LAKE ELSINORE DRAWING NUMBER: WALMART SUPERCENTER #2077-07 HYD -01 ON-SITE IMPROVEMENT PLANS SHEET 1 OF POST -DEVELOPED HYDROLOGY MAP FILE No. 1 alar .� 11'� -� �• ►• 1� • --.� � / y �,�.���-�► �_ ����� �sr�—�.��'-"i__`��� `ice-»�' �"�_ „�' � �'-� ---_= � � ��-�-�M��, -1 101 ~'� \ �' 204 125 \ 1297 127 0.78 CB4 -101 I 1 l ` I '" " r'`� ♦ _203: t LOQ 1 104 � ��� } , � - 1 CB�i I ^� 0.41 C 20 --�-� ._ ....., .i �♦ \ .r... » » �°"� ,� ,f 1 ' X 12» O t t 3� X36 SQ. G TE i I f I f \-- 2 02 - I I 1 _ oil Wwo 12'X1G$-1 W- 0 .--' ♦ 0.83 ` . :' ti" J I I 'E - I f� SQ. TECB`RER SPPWC STD. ! I I I24 r f O{ 1 O_ p C l 4�W-7') 111 ♦ \ 4 �� ■ _r ■ ■ ■ _� ■ _}� ■ _� ■_! -. f \ I ,� 320_ -- _ �PRO�OSY—BUILDINdD ` I 261 \" w — I 131 I ' X/"j 2»X12»O % `_O a` ~� O�0.86 CB -203 \"'! '� CB -401 1`300, 3� 36 GRATE SQ. 103 / C 0 1 W i I - - 12" *' CB PER SPPWC STD. -' '' •. ,r r` "' ' ' ` II 102 SQ' G ) 1.74 f K 112 f l 122 I 1 O B- o a 1;.,.' 1.04 I I UTLO 12'X » _ ...__ - — - =----- -- ---- - j \ 0.9 III I Wl II - 105 SQ. G --� - 1 ,, I II _ I 100 -201 CB-3�'I_" --ft�/ � r �'I I li 14.98* g:. PERS 58 ,t»X12 , " ' r.'.::;:: P r 1 / l r - i 3� 3 2 W=7 0 ✓ SQ. GRIT � `� 12» R �� (At - DRAIN WIN 1300 109 1»X12» O 4 O O ° ` .cB- ,..2/SQG36» S RATE11I0 I I I , I I 1 201 ,2.11 ♦ItY 1 12 S � `� I l � � '' I ..-- tf ' -- ..,,t r \ \ '=,�T"r•�f' 0.30 It I cB-302 118 120 � �� � `� I I 1 107 -` ✓ - ♦ CB PER SP C STD. 1300 0, 27 _ /- -�' 0.42 --1305- 0.68 B .` . 300-3 ( -14') t I \101 ` ✓, �` I Er 1I i l,.■ - ti -' 115 I I I B-104 119 CB -103 I I , I I` ti s'� I CBS PE �SPPW3 24"�X24» x I -. -CB-105 5Q. G{ATE \ ' _-a2-"Xt2- _ - I ISTD. 300,) o ( -- 1 SQ. GRATE _ -__ - -,I I \ I III III I I ? -'____________________--___---__-_-______ ;�_____ I11 V I IIII\I�III{lily � ,� � -�-i II F I I I I I I I I ► a I fi ��___—__...---.__________________ I I I I:� �.-1295,-7 - I I I W1 I V I I I ISI III I I I _ o¢ f,-....; ► 1 a x - a 1 I I I � _ —� �, ,- \}€ 1 I Ii IIIIII -__ ` I I IIII II�III IIII I SIX — X'\ _ I ,-�£ ill _ IIIIIIIIIIIIIIItIII VIII I I I� 1 I I , �,�� � rl � �___ S �...,..� � ,� ._ O `^wf �,—..''" j � � III : I ; : I I I l v l t l ' � I I ' I l I I 1 , I , d I I 1 ► A I r . �' III fk�� LOT 6 III x f I '� i ' jj" a ( I 1 1 1 /M- -'-. -' ■� =_=___ its ijT� /- ,j� �j I� / j � i I I �� � \ .,� x j� �( � '. w/ _ ✓^` "' r, 1 I i fi % / 1 � j l � —4-' f 1 x 77 WW D X°X T/E R r , _ - 4 it �- , 1 P --IJ. / ' -- --12 0- -- .:_. — -_. _ , � f � � � � j f j -- '� `\� �\ I � GRAPHIC SCALE v} I � / ® _ I EXISTING 30" ,� %. _ . ~- I I I - - Ix X 0 30 60 i � .. j RM DRA N ` w .. ..1 ti �°� ��`�; - y' k § \ V>` / IN FEET y 1 inch = 60 ft. ..,._.-.. � �° � � I i 4 , � i t � '� .`.! \°`.•v.� � i '',,�� �� \Iia..``,, `` I 1 s 4 ca � � � r- .,.'.`-----'-"'1 I 1....t � 1 1 Know what's below. ? I-> 0111 before you dig. MARK REVISIONS THESE PLANS HAVE BEEN REVIEWED FOR COMPLIANCE WITH THE APPROPRIATE CONDITIONS PREPARED BY: SEAL APPR. DATE OF DEVELOPMENT AND/OR CITY AND STATE LAWS, AND A PERMIT MAY BE ISSUED.30 Executive Park, Suite 100 ne, CA 92614 GreenhergForrOW t: 949 296 04501rf X949 296 0479 BRAD FACRELL RCE 43920 CITY ENGINEER DATE JOHN NOURZAD, RCE No. C46039 DATE N Mvv/� No. 46039 7° ♦ Exp. 12/31/18 �ql CIV11- F 4F CAu� BENCHMARK: SITE LOCATION MAP NOT TO SCALE LEGEND 100 MAJOR WATERSHED NODE - AREA IN ACRES 6.65 * DENOTES TOTAL AREA SUBAREA WATERSHED NODE 1.24 -------- AREA IN ACRES �■ ■ �� HYDROLOGIC MAJOR WATERSHED BOUNDARY -f- - 1310 ­1310— CB-101 •- -1310- --- - CB -101 SCALE: 1" _ 60' DRAWN: NB DATE: CHECKED: September 27, 2018 JP HYDROLOGIC SUBAREA WATERSHED BOUNDARY FLOWLINE STORM PIPE FLOW DIRECTION PROPOSED MAJOR CONTOUR PROPOSED MINOR CONTOUR EXISTING MAJOR CONTOUR EXISTING MINOR CONTOUR OFFSITE HYDROLOGIC WATERSHED BOUNDARY CATCH BASIN NUMBER NOT FOR CONSTRUCTION CITY OF LAKE ELSINORE DRAWING NUMBER: WALMART SUPERCENTER #2077-07 HYD -01 ON-SITE IMPROVEMENT PLANS SHEET 1 OF POST -DEVELOPED HYDROLOGY MAP FILE No. APPENDIX E Reference Documents 30 Executive Park Greenberg Farrow 296.0450 Irvine, CA 92614 949.296.0450 www.greenbergfarrow.com We Are Global I (� FINISHED SURFACE FIhTAICp SURFACE .. .. 4- *R STM DRAIN t - .. . �- 0vMsTORU It 'C f ._ ---- - - '-• - -- --1305 - -- --- --•1706... ______ ...-._-. - : -•-'—�- --.._ .� . � . ----- las _.- ..... - ..I+�y.,.--_- __. _. SURFACE WER - - - . • / STM DANK [' I ' 2 SIORMcz --- -- --�.. -"4DDQ, "" - •r •~ t - - - ------ ...-_lam-•.--- •- - �RP1F - - - - - --- 14 ". - .. .. ------ 8 I HGL 5 I, SEE ONSIIE� .. S.DX50 GSt»0.019]' .� ... ....... .. ... .... .. .. ..... .. .. ... .. . . .. P1a4 FOR50:731F - - .. fp!{IN0.41g1( Mu AWuN � � � � ...9HSDE-� . T � I ! 5.0.0106 iD-ILOAQ 2590 . Gw�8.16 CFS I.&f OF I + J6.90 LF ._.1295- Nw-2.60 FPS _ - 4495_ _ -�7au. S10R11 DPNH . . .. .1 1 STIr DRAM ..-- ..'1265• - Q-LOLQ 2500 0-LOAT1. 3000 _.. .. :. .:. .. .. .. 9wo.57.91 .CFS. m04•.1.15 CFS ..._. .: .. ... .... ... _ . .. - Vwm-&19 FPS Hm=0,65 FPS I .10 50. : 36{IXI : 9 20156 : f 40+00.- .30 LINEA ;INE C (LEFT): LINE C (RIGHT) CAMBERN AVE THIRD ST THIRD ST .. Y = 20' HOR 12 1• = 2' VERT. I II II II I 1 III � I STORM DRAIN NOTES: i i I I I II ' i;l LINEA NOTE DESCRIPTION11 I �T REMOVE (E) CONCRETE BULKHEAD. CONNECT TO E 24" (E) STORM IDRATR 30 () RCP SR THIgD STR QW#dSTA I II }I' - jF; - - - - -_. ._� L:•-�- - _— 31 INSTALL 18" RCP SO; D-LOAD PER PUN ..74 WAIEI �I 3 INSTALL 36" RCP SD; D-LOAD PER PLAN i II I CROSSINGp,��, I II I Q LINE DATA 1 - o - ' f 33 CONSTRUCT CATCH BASIN Na 1 PER RCFC&WCD STD DWG _---_-- - � L_ ---- --- O N0. CB100, W=1$ T(E) X51 I I CROSSING �' I 1 •o i� 34 CONNECT TO (E) MANHOLE STUB 1 PER i51�E'f 5 3 1 Ll%«•• »- 0 (130400)FG r QHANNEL STAj1lEs; 1-2,_ALOA1 I O I I ym7� I a -(1304 INSTALL 24" RCP SO; D-LOAD PER PUN )SEE ONSQFf 1174 I yi II W •`� r CAUTION: UTILITY CROSSING!!! (FOR )I�T�I I I i 4 I f{ 1 1 V 2 MUST HAVE 1 FF MIN. VERTICAL CLEARANCE r ° I 15 III W=7' I I q Y {E] STORM DRAIN PER SEPARATE CONSTRUCT CATCH BASIN NO. 1 PER RCFC&WCD SID DWG 1 4 - Com' II. pro=1,15 CFS THIRD STREET 37 NO, CB100, W=7' f J'd 11 '! -- k . Mw=0-65 FPS I I a • • I I 3 - - - TATE 2 PLANS pw.61.'i1 ICES I . I Q I INSTALL BIO CLEAN MODULAR CONNECTOR PIPE SCREEN OR RtkCddVCO _ � CHANNELS 1 bCROSSING 12"'l1--_ i1'w --- - ,-'!'.v - �� - - '2"v. c;"y. 3B 'A o & 9 FPS ' I I a •••••"`-o--{ APPROVED EQUAL + 30f0�.39 y I I (r= . CURVE DATA WA 39 CONSTRUCT LOCAL DEPRESSION PER RCFC&WCD STD DWG. j pj I I I � CI NO, LD20119+9..51 D10 C' [L L 40 INSTALL CATCH BASIN MARKER PER DETAIL ON SHEET 7I-29i 151 LINE Cr ( 11 I 4 `f Jpr----•-- - - . 107. Ii ' _ - T� si S NELI '� '-(I 54X) NPID P sTAGE.k; GRAPHIC SCALE --91 _ I I 1 IN FEET) inch = 20 ft II LII e, . •, . - —. I I l Nm=260 FPS --_--�---_ Iii I III I 1 � LINEA � O GRAPHICSCALE LINE C (LEFT)_ LINE C (RIGHT) NOT TO INDEXMCALE AP CAMBERN AVE (c FEET) THIRD ST THIRD ST NOT FOR CONSTRUCTION Know what'sbelOW. , inch = 20 ft. Call before you dig. — THESEHAVE BEEN REVIEWED FOR COMPLIANCE WITH THE APPROPRIATE CONDITIONS PREPARED BY SEAL BENCHMARK: DESIGNAHON #3433 AGENCY: RIVERSIDE COUNTY aw" NWe[.N. MARK REVISIONS APPR. DATE 'OF DEVEPLANS LOPMENT AND/OR CITY AND STATE LAWS, AND A PERMIT MAY BE ISSUED, 30Executive Park ,Sui[e100 Yl1 TRANSPORTATION COMMISSION ELEVATION: 1316.96 FEET. MONUMENT CITY OF LAKE ELSINORE Greenber Farrow Oy 1 1i00R�� TYPE: FOUND 2- BRASS DISC WITH 10' CONCRETE COLLAR. LOCATION; 9 Irvine, CA 92814 OR 7 SOUTHWEST CORNER CENTRAL AVENUE AND CAMBERN AVENUE (DOWN 1: 949 296 0450 L: 949 296 0479 1 0') AGENCY: NGVD 1929 11 1 46039 SCALE: DRAWN: STREET IMPROVEMENT a• 12/31/10 n gg SHEET 1 1 OF 13 s STORM DRAIN PLAN &PROFILE JOHN NOURZAD, RCE Nm C46039 DATE �'/j Iv DAT£: CHECKED: FILE No. BRAD FAGRELL RCE 43920 DATE C Of CA'v5 September 24, 2018 CJP ITY ENGINEER r—I1., 0- -C is 0 0 0 0 Lr, e s .- U I., N 4-J 0- 1. ie 3\ Q) i. LU LU L LULnM- -,,, a- a- CL u. In j, 0 L. >,I,, r -I H rl H rl H r -i CL IN CD 0 0 CD CD 0 CD -j ce is 0 0 0 0 0 0 0 E N N is I 4c I 4-J - I r I, O I 00 3: 0 0 0 0 0 0 CD 0 M 0 0 CD CD O a1 H LL q.- r1i Ul 0 Ln Ix CO 0 4-J LL IN CD 0 0 0 = I z IN 0 m 0 m 0 m 0 (M . Z q, 0 H 0 H 0 H 0 cu -- M 7 ,, . CD . 0 . 0 4-J e3j.- Ix r14 r\j r1i r14 as x 0 t I 0 clic 0 is 0 r -I CD r -I 0 CD 0 is 4J it 0 0 0 0 0 0 0 3: _0 E is 0.- Lit rl r -I 3: 0 it LL I z qt I I -- — — — — — — — — — I Zi , t I I I ill. CD 0 CD q, U= W, r-4 0 r1i 0 r1i CD rj 4-J -a,,. 0 0 0 0 it 4-J 0. 3- •rQj o". -1 rl rl r -I il u I LL ic I I I I 00 I 1- p is L- > 1•• is 0 In 0 0 C, m CD W W clqc 0 . 0 0 . 0 Z I., Cl— 0 it In LM F-4 i, = LU is is LI) LU % O Ln I Ln is I j I I <0 H I '-i is I IN I- to il m m m m 00 0 w W L. LLI Ix 0) LLJ IN m 0 0 0 0 0 0 I CU -JIll L. - LL i . . . . OO > H I , ' CU -0 M: i N rn M M LL 1, C: L- CD CD CD CD Z 0 q, LU 0 rn rn M M ce il IN r -I r -I r -I r -I co— --- — — — — — — — ,�o LLnLj,--i LU j (W IN 0 1 M CD I M CD 1 M CD I P- u IN -0 > is r -I 1-1 r� H H H H < is r ro CD CD CD 00 H W (V I., C) > LOG a) Z) is >2 LL V) 1, C) H V) IN I I r,j U -0 E 3O:' r% C) 1 0 1 01 01 Z LU (.0 QD e.D (.0 I.c il Q) CLI.: N1`14 r4 Nt03> LL 11 1-1 IN 0_ L. LL J ic I i. I I I I a) ce LU I N — — — — — — — — — UtL/) 0 Z is I IN l0 I l0 1 (.0 1 1.0 1 Z H is r -i r -I r -A a) H J'c -j' I-N is al V) V) 00 00 00 00 m -i Z' Cf LL -e LU Q� 41 u u LLI 1., 11 (13 LU co is IN --- — — — — — — — IN 61 rlj n P\ 2: LU i L- IN 00 m 0) m iT 3: H (1) > 0 H 4-J QJ L. 00 U) is M r I.. CD C CD C) 0. 1.0 >- LL I.c :R: LLJ re) rn ry) M CD LL is r -I rl r -i H 0001, 1 1 1 00 CD lh — — — — — —— Ln O H I en I NI re) 1 H � r1i q' 4-J e-'� Ln It re) re) IN a) LL L4 1; to L4 z LU 57 < a) u 4-J Qi; MLn Ln Ln L.0 CD l0 I L. > 0 ic 0 0 0 00 q, CU a) r 1., 11, CD n C) n C) P, e.0 >r V1ism . 011 . m . (n 0 C: LU IN r14 N N r4 0 is H -C r-4 r1r-I 00 IN I Ui. I I I O CD IN 1 10 0 10 0 10 0 1 C INO w w m rl w Ln 0 E=- 1, 0 k.0 t.0 0 rl m r - (V Ll;; 4-J Ic 0 Lf; In let 0; CD co LU IN 0 r1i ('14 rli It In 4-J ',i' 0 0 0 CD LL il H r -i H 0+- 04- 1-1 Tl T2 T3 50 R SH CD CD Q 20080068-CAMBERN-A 20080068 WM LAKE ELSINORE 0 100 YR OFFSITE CAMBERN LINE A 1000.0001297.380 1 1302.890 1025.6801297.510 1 .013 .000 .000 0 1049.7701297.630 1 .013 -60.017 .000 0 1050.7501297.630 1 .013 .000 .000 0 1050.7501297.630 1 1297.630 1 4 1 .000 2.000 .000 .000 .000 .00 2 4 1 .000 1.500 .000 .000 .000 .00 8.160 .0 Page 1 H Ln 4-) 0 - is 3: 1, Q) I.0 uj LLj it In CLIc a- x ry) is 0 L- >,I.crl H r-1 C) 0 C) rl •• I,., Z CL Ic i CL I I co I I CL rl 14 IN CD 0 0 CD CD CD CD I, CD CD CD CD CD CD CD E N N% 4-J - I r is ~ CD I CD 0 1 CD I CD CD I CD I 00 It 3: 0 J., CD CD 0 0 0 0 0 r-1 111. . (13'.. CD CD CD CD CD CD W H LL I, N is Ul I rd L. N I m IN 4-) LL CD 0 0 CD 0 is = I0) Ic CD m CD r-1 M r-1 CD is . Z CD r -A CD r -q r-1 CD aj .- rd . CD 0 4-J W.- M rn 011 m rn rd Z: 0 I, CL I 0 cLli Ht 0 Ir 0 CD CD 0 CD CD 4J it CD m CD CD CD CD -0 E 4, 0.- Li r4 It It LL I Z is I z I I I I 'trd is CD I. U= (V t.0 CD t.0 r-1 to I- H .c -- 4-J _0 T :T 00 CD r� M 1, ., 4-J CL M J., is QJ 01.4 r1i r1i r1i is u I LL 00 CD is L- > 4-J is CD 00 CD 't � 0 It W (V cLil CD . CD CD m CD CD Z I. Cl— 0-,,, rn H M LLI IN Ln uq LLJ It Ln I- I Ln IN t I 0 H V) N M In l0 CD r, 1.0 L. LL] 0) LU I- rlj CD N n CD � Ln LL ai -j it L. - LL I., LU > H -,,, W -0 m is r-1 LL llc c L. m Z 0 1, LU U 0' H't CL It � LU H LU I Ln "t I r-1 1 0 H 1 01 H 0 r- U > is CD � CD CD CD CD 00 -j < is r rd < J.- . CD 0 F -i E W W IN r-1 CD r-1 CD >> M: LL H a) Ln U-0 V) E I = 0L 1 m I M 1 00 1 r -j 1 1.0 1 Z LU r� r- r -i < LL CL00 (1)d00 4- 00 nrd 3 LU I, > LL 114 _j It 11 it 0_ L. LU is I N I I I I I a) a u— Y — — — — — — — — — — In L/) 0 11 1 H I r-1 I H I m I a) I Z LU m a) a) Ln Ln CU H Z 0) U) H L/) IN r, r, n 0 M -J -J is 0' LL I. In Lr) Lr) Ln Ln � LUI- u I. U p--/ - rd LU � I. I- a- Y H; II I I < Z: I, — — — — — E _j I CD I -Cl- I re) I CD I ri I (z m CD Ln 1.0 I'D 2: W', L- H r4 � O 3: a) > 0 H It 4-J (3) is CD CD 14 r-1 r-1 L. 00 L/) is rd— ON m m a) m CL LO LL J., 3 LLI N r -i rlj r1i r14 CD LL is I, 000I, I 00 CD is CD H I.. I -1,- 0 1 -,j- I M I CD I r -i I C) I, -C rlj m 0 CD (Ili it 4-J r-, 00 n rlj CD CD I, CL (1) LL re) m Ln Ln Ln CD I C) I CD I CD I LL aj is n r1i t.0 to I.D 1.0 LLI 4-J Oic re) m 'ZI, H n n c L. > 0 it - 'T . r14 Q) OJ — is t.0 0 1.0 w k.0 k.0 tD 110 V > r L/) 1, 00 00 u 00 0 00 00 C LU IN r1i r1i z r14 r14 r1i A- I F-1 IN r-1 r -i < r-1 Hrl 0C U 1, I I 1 1 1 H — —H— — 0 1 C) CD I z CD I n' 0 1 x 0 1 It r_r-4 M Ln W In W W W 1, 0 ry) 00 r-1 r-1 L/) a) m ai is 4-J 0 H r-4 —i r14 (.0 -j 1.0 J is rd LLJ is 0 0 —1 0 u CD -i CD 4J 0 0 < 0 z 0 < 0 LL is Lf) -j I. r1i rli 3: " n N 3: r4 M 0+- H THIRD -C -LEFT T1 20080068 WM LAKE ELSINORE T2 100YR T3 OFFSITE THIRD LINE C LEFT So 2000.3201286.370 1 1290.190 A2002.1501286.460 1 .013 2002.1501286.460 2 .500 7x 2006.9801286.760 5 3 .013 7.320 1295.090 Wx 2006.9801286.760 6 SH 2006.9801286.760 6 1286.760 CD 1 4 1 .000 3.000 .000 .000 .000 .00 CD 2 3 0 .000 9.110 14.000 .000 .000 .00 CD 3 2 2 .083 .500 14.000 .000 .000 .00 CD 5 3 0 .000 9.110 14.000 .000 .000 .00 CD 6 4 1 .000 3.000 .000 .000 .000 .00 Q 50.590 .0 Page 1 .000 .000 0 90.0 -45.000 r -I w CD O =* 0 0 C) C) re) I., 4-J CL 11 , :r. 1-1 Q) -1 LLI LU LU LLj Ile (n CL* 0- a. a- 1, 0 L- H rl H r-I H H Z a- CD CD 0 0 0 0 0 w is -j 0 0 0 0 0 0 CD E N N ic is 4J - 1 r is 0 1 0 0 1 CD CD I CD CD I 00 is :r. 0 r IN 0 CD 0 0 0 0 0 r-I i. . * 0 CD CD CD CD ill qu H LL i,, N 11 UlI I -,I rd L. x is m q, Co 0 1 H is — — — — — — — I If I I I 4-1 LL Ile CD 0 0 CD I0) m 'A CD m CD m 0 m CD . Z* Ln H Ln r-A Ln r-I Ln .- rd CD . CD . 0 4-1 CU is rl r-I r-I r-I CL I 0 Ln 4J 0 m CD m 0 3:-o E it 3: 01, LL I Z i I I I I Z I is rd is CD 0 CD U = cli 0 0 0 CD 0 0 0 4-1 -0 is It It .1, IT is 4-1 CL =3 OJ 01., is u r LL is I I I 00L.> 1 00 10 1 00 1 CD 4-J 0 m 0 CD CD r-I 0 (V W CM, 0 . 0 CD . CD Z is 0-r 0 il M M r-I H M LU is F-- 1, LA LLJ I .c ul I In is 1 1 1 1 O Q� tA q, 0 0 CD CD IL. LU is CD LU N N0 r,4 0 r-4 0 r-4 UCU -J j.. L- - LL i, I> F-A I.. Q) _0 M: jc CD 0 0 CD LL C L. is m m m m Z 0 LLJ U Ile " r14 r1i r1i Ce 1,I I r-I r-I - — — — — — — — — — — I w r-I W Ile I a) isrl I r-I I r1 r-I I r1 r-I I 00 in r, U -a > is 0 0 0 0 0 -.0 -1 < _ rd < q. 0 CD 0 0 LL W (V 0 0 0 0> Lce >S LL 00 H W M U0 C:, U-0 Ul is 0E is r\j I = Q' is I Ile LM I Ln I Ln I Ln I Z LLI ic — Ln ,, aj (L i, W:R: F-4 Ic > LL Q. L. LLI is QJ Q' U is Ln Ln 0 il. I Ln I Ln I Ln I Ln I Z LU il r-I H r-q r-I a) H Z is 1-1 cm LA H 11, 0 1- H r4 r-i r-i rd -J J?: CY LL i. �e LLJ is u U 0 1. -./ Ile M L.LJ Q' Y F-I < 1 O 1 M I U-) I 2 LU r L- is rl r-I r-I r-I CD 3: H < w > 0 His 4-J W IN CD 0 0 0 L- 00 De LA It M ril m 0) m m 00- t.0 >- LL it :R: W jlc r-4 r14 N r14 0 LL r-I r-i 0001 I ;c I I 1 000 c — — — — — — — — CD r-I is 1 0 1 0 1 M[ LM I 0 is -r- 00 I'D 00 rl N * 4-J it M M r-I 4, CL II is CU LL M M M M 1 is F-I 7 ic 0 1 0 1 0 1 0 1 Q1'.c r-I m m CD r-I m w 4-JcLqc w w w 0 0 0 r-I j- L. > 0 . CD 00 Ic W W r is k-D 0 1.0 0 r, 0 r- LD is > — Ln ic 00 00 00 00 CD i, r- LU is rlj r1i r\j r1i 0 q,, H = -,% H H r-I r-I is 1 u 1141 CD — — — — — — — — 0 is 1 ir 0 10 0 10 0 10 CD I —)00 r1i 4 0 m m -,I- m m I'D is 0 E-= -1 0 M ro 0 Ln m .1 a) is 4-1 r is 0 r1i rli 00 o ill rd LLJ -x CD CD r-I rj H m is 4-J \i1 0 0 CD CD LL i. Ul —j M M ry) rn 04- r -I w CD T1 T2 T3 50 R SH CD Q 20080068 WM LAKE ELSINORE 100 YR OFFSITE THIRD LINE 3000.0001286.810 3002.3901286.830 3020.4301287.010 3036.9601287.180 3036.9601287.180 1 4 1 .000 1.150 20080068 -THIRD -C -RIGHT C RIGHT 1 1 .013 1 .013 1 .013 1 1.500 .000 .000 .0 1290.190 1287.180 .000 .00 Page 1 .000 .000 0 44.940 .000 0 .000 .000 0