Loading...
HomeMy WebLinkAboutHYDROLOGY STUDY FOR PARADISE CHEVROLET SIP 7-7-1997 V. &).0,6 WWI - y � y prepared for: PARADISE CHEVROLET STREET IMPROVEMENT PLANS PROJECT: Paradise Chevrolet ADDRESS: Casino Drive City of Lake Elsinore, County of Riverside, California REFERENCE: TENT. TRACT NO. 28552 DATE: July 7, 1997 prepared by: QPpF ESSl0yQ� A. tij�oF2c cr_ C-23971 1100 S.COAST HWY,#211 Exp. 12-31-97 LAGUNA BEACH,CA 92651 * ph: 714.376.6407 * fax: 714.376.6417 sl CIV\L NAP OF CJN� RICHARD A. MOORE. RCE 23971 DATE _ - page 1.0 Discussion.....................................................................................................1-3 1.1 Purpose................................................................................................................1 1.2 Methodology..................................................................................................... 1-2 Assumptions and Design Criteria Reference Plans 1.3 Summary.............................................................................................................3 2.0 Location Map...................................................................................................4 3.0 Hydrology Map................................................................................................5 4.0 Rational Method Study................................................................................6-13 4.1 25-Year ............................................................................................................6-13 5.0 Storm Drain Hydraulics..............................................................................14-17 5.1 Catch Basin Inlet#1 A Capacity Calculation.................................................14(a-e) 5.2 WSPG Input File - Line "IA"............................................................................15 5.3 WSPG Edit File -Line "lA................................................................................16 5.4 WSPG Output File - Line "IA" .........................................................................17 23.OMydro%st hydrology report.doc 77, 1.1 Purpose The purpose of this study is to determine the storm runoff to the south of the proposed site after the site is precise-graded per proposed plans submitted by NICE Consultants. At the southeasterly end of the proposed improvements to Casino Drive, along the northeasterly curb, there will be a concentration of flows from the following tributary areas: one-half of Casino Drive along the improvement frontage, a portion of the proposed on-site improvements in Parcel 1 (the proposed dealership) and a substantial amount of drainage from the Elsinore Apartments, being constructed just northerly (upstream) of the subject site. Most of the subject property will not drain into Casino Drive. As stated in the hydrology report for the rough-grading, the southerly portion of the entire 10-acre site was graded to create a flat pad as a borrow site for the northerly portion. The southerly pad drains via overland flow into a desilting basin that outlets directly into the San Jacinto River, which abuts the property to the south. The property also abuts the I-15 to the east. A portion of runoff from this freeway flows onto our site. This runoff was studied in the aforementioned previous report and is intercepted by a storm drain and carried to an existing 36" CMP that drains southerly under Casino Drive. The remainder of the site will drain via overland flow into two on-site proposed catch basins and also into two proposed undersidewalk drains that will outlet into Casino Drive. The City of Lake Elsinore has determined that a catch basin located at the southerly end of the street improvements must handle 85% of the 25-year storm runoff for the tributary areas. It is the purpose of this report to determine that need, and evaluate the proposed system. 1.2 Methodology Assumptions and Design Criteria 1. A 25-year hydrology analysis was completed for sizing drainage facilities. 2. The hydrology was done utilizing the computer program "Rational Method Hydrology - Riverside/San Diego County Methods - System Model" by Advanced Engineering Software (aes) Ver. 1.5A, Release Date: 01/01/95 (Reference: Riverside County Flood Control and Water Conservation District Hydrology Manual). 3. The site in questions lies on Plate C-1.41 of the Hydrologic Soils Group Map. The Soil Group is Group B. 4. Pipe capacities were analyzed the computer program "WSPG." 23.011hydrMst_hydrology report.doc page 1 5. The catch basin size in Casino Drive with Q25, in flowby condition, was verified using the chart by the U.S. Bureau of Public Roads, Capacity for Curb Inlet on Continuous Grade. Reference Plans 1. "As-Built" rough grading plans for the subject site prepared by NICE Consultants 2. Proposed precise grading plans for the subject site prepared by MCE Consultants. 3. Proposed street improvement plans for the subject site prepared by MCE Consultants. 4. Hydrology Map for the proposed site improvements prepared by MCE Consultants. The map is included in this study for reference. 5. Aerial Topography of the site as flown in August, 1996. 23.01\hydrMst hydrology report.doc page 2 1.3 Summary The capacity of Catch Basin #1 A is determined by the U.S. Public Roads chart and the 25-year hydrology (flowby condition). The 25-year hydrology gives the maximum flow that in front of CB #lA of 31.8 cfs. This means that the catch basin will have to intercept (0.85 * 31.8) 27.0 cfs. From the attached calculations it is determined that a 28-foot long catch basin will pick up 27.6 cfs. The capacity of the storm drain line are determined by analysis of the 25-year hydrology flows. These flows were inputted into WSPG and the output files are included toward the end of this report. For Line "I A", the highest water surface elevation in the pipe on site is approximately 1292.5 at CB#IA. 23.011hydroW—hydrology report.doc page 3 i LOCATION _ ._ , Y. .: LUGONIA gee CRAMSITE FRANKLIN LAKESHORE i r of zi 15 LAKE w ELSINORE f 23.01\hydro\st_hydrology report.doc page 4 11 1HYDROLOGYMA 23.01\hydrolst_hydrology report.doc page 5 !Cl- Ioii�M1tlai� �ar-..z a--<<.•• ..a--c_..:ac -.' ea`�%+"'. '�ai.:3Ei 4.1 25-YEAR ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/95 License ID 1426 Analysis prepared by: MCE CONSULTANTS 1100 S. Coast Hwy. , #211 Laguna Beach, CA 92651 (714) 376-6407 ************************** DESCRIPTION OF STUDY ************************** * PARADISE CHEVROLET * CASINO DRIVE, LAKE ELSINORE * 25-YEAR HYDROLOGY - CASINO DRIVE ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ FILE NAME: C: \TEMP\ST Q25.DAT TIME/DATE OF STUDY: 8:43 7/ 2/1997 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.320 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = .980 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.730 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE _ .4809628 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE _ .5084069 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 25.00 1-HOUR INTENSITY(INCH/HOUR) = 1.1637 SLOPE OF INTENSITY DURATION CURVE = .4855 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES FLOW PROCESS FROM NODE 10.00 TO NODE 10. 10 IS CODE = 22 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL USER SPECIFIED Tc(MIN. ) = 9.400 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.862 SOIL CLASSIFICATION IS "B" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8759 SUBAREA RUNOFF(CFS) = 22.81 23.011hydrolst_hydro1ogy report.doc page 6 Elm TOTAL AREA(ACRES) = 9.10 TOTAL RUNOFF(CFS) = 22.81 FLOW PROCESS FROM NODE 10.10 TO NODE 10.20 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 1336.10 DOWNSTREAM ELEVATION = 1327.00 STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 8. STREET HALFWIDTH(FEET) = 38.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 23.11 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .51 HALFSTREET FLOODWIDTH(FEET) = 17.47 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 7.13 PRODUCT OF DEPTH&VELOCITY = 3.62 STREETFLOW TRAVELTIME(MIN) = .40 TC(MIN) = 9.80 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.805 SOIL CLASSIFICATION IS "B" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8755 SUBAREA AREA(ACRES) _ .24 SUBAREA RUNOFF(CFS) _ .59 SUMMED AREA(ACRES) = 9.34 TOTAL RUNOFF(CFS) = 23.40 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .51 HALFSTREET FLOODWIDTH(FEET) = 17.47 FLOW VELOCITY(FEET/SEC. ) = 7.22 DEPTH*VELOCITY = 3.67 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ FLOW PROCESS FROM NODE 10.20 TO NODE 10.20 IS CODE = 10 ---------------------------------------------------------------------------- »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ FLOW PROCESS FROM NODE 2.10 TO NODE 2.20 IS CODE = 21 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K* [ (LENGTH**3) / (ELEVATION CHANGE) ] **.2 INITIAL SUBAREA FLOW-LENGTH = 525.00 UPSTREAM ELEVATION = 1337.50 DOWNSTREAM ELEVATION = 1329. 10 ELEVATION DIFFERENCE = 8.40 TC = .303* [ ( 525.00**3) /( 8.40) ] ** .2 = 8.488 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.008 SOIL CLASSIFICATION IS "B" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8767 SUBAREA RUNOFF(CFS) = 1.85 TOTAL AREA(ACRES) = .70 TOTAL RUNOFF(CFS) = 1.85 23.01\hydro\st hydrology report.doc page 7 FLOW PROCESS FROM NODE 2.20 TO NODE 10.20 IS CODE = 4 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.7 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 9.0 UPSTREAM NODE ELEVATION = 1329.10 DOWNSTREAM NODE ELEVATION = 1327.00 FLOWLENGTH(FEET) = 30.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 1.85 TRAVEL TIME(MIN. ) _ .06 TC(MIN. ) = 8.54 FLOW PROCESS FROM NODE 10.20 TO NODE 10.20 IS CODE = 11 ---------------------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 1.85 8.54 2.998 .70 ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 23.40 9.80 2.805 9.34 ++++++++++++++++*++*++++++++*+++*WARNING+++++++++++++++++++++++++++++++*++ IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ++*++*+++++++++++++++++++**++++++++++++++++++++++++++++*++++++++++++++++*+ ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 22.26 8.54 2.998 2 25.13 9.80 2.805 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 25.13 Tc(MIN. ) = 9.80 TOTAL AREA(ACRES) = 10.04 FLOW PROCESS FROM NODE 10.20 TO NODE 10.30 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 1327.00 DOWNSTREAM ELEVATION = 1325.60 STREET LENGTH(FEET) = 90.00 CURB HEIGHT(INCHES) = 8. STREET HALFWIDTH(FEET) = 38.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 23.011hydrotst-hydrology report.doc page 8 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 25.29 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .62 HALFSTREET FLOODWIDTH(FEET) = 23.09 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 4 .58 PRODUCT OF DEPTH&VELOCITY = 2.84 STREETFLOW TRAVELTIME(MIN) = .33 TC(MIN) = 10.12 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.761 SOIL CLASSIFICATION IS "B" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8752 SUBAREA AREA(ACRES) _ .13 SUBAREA RUNOFF(CFS) _ .31 SUMMED AREA(ACRES) = 10. 17 TOTAL RUNOFF(CFS) = 25.45 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .62 HALFSTREET FLOODWIDTH(FEET) = 23.09 FLOW VELOCITY(FEET/SEC. ) = 4.61 DEPTH*VELOCITY = 2.86 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ FLOW PROCESS FROM NODE 10.30 TO NODE 10.30 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ FLOW PROCESS FROM NODE 6.10 TO NODE 6.20 IS CODE = 21 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K* [ (LENGTH**3) / (ELEVATION CHANGE) ] **.2 INITIAL SUBAREA FLOW-LENGTH = 200.00 UPSTREAM ELEVATION = 1329.40 DOWNSTREAM ELEVATION = 1327.00 ELEVATION DIFFERENCE = 2.40 TC = .303* [ ( 200.00**3) / ( 2.40) ] **.2 = 6. 112 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.528 SOIL CLASSIFICATION IS "B" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8794 SUBAREA RUNOFF(CFS) = 1.12 TOTAL AREA(ACRES) _ .36 TOTAL RUNOFF(CFS) = 1. 12 FLOW PROCESS FROM NODE 6.20 TO NODE 10.30 IS CODE = 9 ---------------------------------------------------------------------------- »»>COMPUTE "V" GUTTER FLOW TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 1327.00 DOWNSTREAM NODE ELEVATION = 1325.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 25.00 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) _ . 120 PAVEMENT LIP(FEET) = .040 MANNING'S N = .0150 PAVEMENT CROSSFALL(DECIMAL NOTATION) = .02000 23.011hydro�st hydrology report.doc page 9 MAXIMUM DEPTH(FEET) = 1.00 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.504 SOIL CLASSIFICATION IS "B" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8793 TRAVELTIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC) = 4 . 95 AVERAGE FLOWDEPTH(FEET) = .16 FLOODWIDTH(FEET) = 3.00 "V" GUTTER FLOW TRAVEL TIME(MIN) _ .08 TC(MIN) = 6.20 SUBAREA AREA(ACRES) _ .00 SUBAREA RUNOFF(CFS) = .00 SUMMED AREA(ACRES) _ .36 TOTAL RUNOFF(CFS) = 1. 12 NOTE:TRAVELTIME ESTIMATES BASED ON NORMAL DEPTH EQUAL TO [GUTTER-HIKE + PAVEMENT LIP] END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = .16 FLOODWIDTH(FEET) = 3.00 FLOW VELOCITY(FEET/SEC. ) = 4.95 DEPTH*VELOCITY = .79 FLOW PROCESS FROM NODE 10.30 TO NODE 10.30 IS CODE = 11 ---------------------------------------------------------------------------- »»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<<<< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 1.12 6.20 3.504 .36 ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 25.45 10.12 2.761 10. 17 ********a************+****++*****WARNING*******+*a******aa******+****+**** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 16.69 6.20 3.504 2 26.33 10.12 2.761 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 26.33 Tc(MIN. ) = 10.12 TOTAL AREA(ACRES) = 10.53 FLOW PROCESS FROM NODE 10.30 TO NODE 10.40 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 1325. 60 DOWNSTREAM ELEVATION = 1316.40 STREET LENGTH(FEET) = 225.00 CURB HEIGHT(INCHES) = 8. STREET HALFWIDTH(FEET) = 38.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 23.01\hydro\st hydrology report.doc page 10 S' OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 26.71 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .54 HALFSTREET FLOODWIDTH(FEET) = 19.16 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 6. 92 PRODUCT OF DEPTH&VELOCITY = 3.75 STREETFLOW TRAVELTIME(MIN) _ .54 TC(MIN) = 10.67 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.692 SOIL CLASSIFICATION IS "B" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8748 SUBAREA AREA(ACRES) _ .33 SUBAREA RUNOFF(CFS) _ .78 SUMMED AREA(ACRES) = 10.86 TOTAL RUNOFF(CFS) = 27.10 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .55 HALFSTREET FLOODWIDTH(FEET) = 19.72 FLOW VELOCITY(FEET/SEC. ) = 6.65 DEPTH*VELOCITY = 3.67 FLOW PROCESS FROM NODE 10.40 TO NODE 10.40 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 ««< FLOW PROCESS FROM NODE 7. 10 TO NODE 7.20 IS CODE = 21 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K* [ (LENGTH**3) / (ELEVATION CHANGE) ] **.2 INITIAL SUBAREA FLOW-LENGTH = 370.00 UPSTREAM ELEVATION = 1330.30 DOWNSTREAM ELEVATION = 1322.80 ELEVATION DIFFERENCE = 7.50 TC = .303* [ ( 370.00**3) /( 7.50) ] **.2 = 7.039 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.294 SOIL CLASSIFICATION IS "B" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8783 SUBAREA RUNOFF(CFS) = 3.07 TOTAL AREA(ACRES) = 1.06 TOTAL RUNOFF(CFS) = 3.07 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ FLOW PROCESS FROM NODE 7.20 TO NODE 10.40 IS CODE = 4 ---------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< »»>USING USER-SPECIFIED PIPESIZE««< DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.4 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 16.5 UPSTREAM NODE ELEVATION = 1322.80 DOWNSTREAM NODE ELEVATION = 1316.40 FLOWLENGTH(FEET) = 25.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 23.01thydrMst-hydrology report.doc page 11 i{ mll PIPEFLOW THRU SUBAREA(CFS) = 3.07 TRAVEL TTME(MIN. ) _ .03 TC(MTN. ) - 7.06 FLOW PROCESS FROM NODE 10.40 TO NODE 10.40 IS CODE = 11 • ---------------------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 3.07 7.06 3.288 1.06 ** MEMORY BANK # 3 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 27. 10 10.67 2.692 10.86 *++**+*+++++**++++++++++++++*+*++WARNING++++++++++++++++++*++++++*++++++++ IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 21.01 7.06 3.288 2 29.61 10.67 2.692 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 29.61 Tc(MIN. ) = 10.67 TOTAL AREA(ACRES) = 11.92 FLOW PROCESS FROM NODE 10.40 TO NODE 10.50 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 1316.40 DOWNSTREAM ELEVATION = 1292.10 STREET LENGTH(FEET) = 590.00 CURB HEIGHT(INCHES) = 8. STREET HALFWIDTH(FEET) = 38.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 30.71 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .56 HALFSTREET FLOODWIDTH(FEET) = 20.28 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 7. 14 PRODUCT OF DEPTH&VELOCITY = 4 .02 STREETFLOW TRAVELTIME(MIN) = 1.38 TC(MIN) = 12.04 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.538 23.011hydro\st hydrology report.doc page 12 SOIL CLASSIFICATION IS "B" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8737 SUBAREA AREA(ACRES) _ .99 SUBAREA RUNOFF(CFS) = 2.20 SUMMED AREA(ACRES) = 12.91 TOTAL RUNOFF(CFS) = 31.81 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .58 HALFSTREET FLOODWIDTH(FEET) = 20.84 FLOW VELOCITY(FEET/SEC. ) = 7.02 DEPTH*VELOCITY = 4.03 END OF RATIONAL METHOD ANALYSIS 23.011hydro\st hydrology report.doc page 13 5.1 Catch Basin Inlet #1A Capacity Calculation 23.01\hydro\st_hydrology report.doc page 14 C . B . CURB OPENING ( Interception ) Given: (a) discharge Q - _ �� CFS (b) street slope S (c) curb type "A- ' "D" (d) half street width ft. Solution: Q/P- /( ) = Therefore y= Q /L = C). r5� L, = 7� i / •�` _ � ) 1 (L for.total interception) TRY: LP= fte YL Q/Q '`P= X "� G = J�� CFS (Intercepted) Qc= �� ,G(� - . w = CFS(Carryover) .� ✓ .�` ✓ I �, P��,�a� -35- **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5 . 1A Release Date : 08/01/95 License ID 1426 Analysis prepared by: MCE Consultants One Venture, Suite 220 Irvine, CA 92718 ph: 714-753-9087 ---------------------------------------------------------------------------- TIME/DATE OF STUDY: 10 :48 7/ 2/1997 ************************** DESCRIPTION OF STUDY ************************** * STREET FLOW DEPTH CALL * C.B. #lA ************************************************************************** **************************************************************************** >>>>STREETFLOW MODEL INPUT INFORMATION<< ---------------------------------------------------------------------------- CONSTANT STREET GRADE (FEET/FEET) _ . 038000 CONSTANT STREET FLOW(CFS) = 31 . 80 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ . 015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH (FEET) = 38 . 00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12 . 00 INTERIOR STREET CROSSFALL (DECIMAL) _ . 015000 OUTSIDE STREET CROSSFALL (DECIMAL) _ . 019000 CONSTANT SYMMETRICAL CURB HEIGHT (FEET) _ . 67 CONSTANT SYMMETRICAL GUTTER-WIDTH (FEET) = 2 . 00 CONSTANT SYMMETRICAL GUTTER-LIP (FEET) _ . 03125 CONSTANT SYMMETRICAL GUTTER-HIKE (FEET) _ . 16700 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS -------------------- STREET FLOW MODEL RESULTS : ---------------------------------------------------------------------------- STREET FLOW DEPTH(FEET) _ . 58 HALFSTREET FLOOD WIDTH (FEET) = 21. 87 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 6 . 71 PRODUCT OF DEPTH&VELOCITY = 3 . 87 DEPTH OF FLOW -y - FEET ' 01 CI6 .03 04 .05 .06 06 .10 .2 .3 4 .s 6 0 to Ct DISCHARGE PER FOOT OF _�. LENGTH OF CURB OPENING - '_ -.-_'- - -'.�� r - _-I- INLETS t:BEN INTERCEPTING r OF GUTTER FLOW I r ; r- - ' . - /o./ ��-5 1 10 .06 Frill ^j� O / i --t- I� os +;1 .oa 03 • � I f� � I I,I � I I - .02 .01 1.0 /y-7 6 PARTIAL INTER- i --- �f -I-` CEPTION RATIO. FOR INLETS OF L p � I , - I .3 Q LENGTH LESS THAN L j ' ,/ I I • .05 .06 .08 .10 .2 .3 !t .5 .6 .8 L010 WL TABLE M BUREAU OF PUBLIC ROADS CAPACITY OF CURB OPEN=NG INLETS DIVISION Two . WASH.,D. C. -34- - ON CONTINUOUS GRADE **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5 . 1A Release Date : 08/01/95 License ID 1426 Analysis prepared by: MCE Consultants One Venture, Suite 220 Irvine, CA 92718 ph: 714-753-9087 ---------------------------------------------------------------------- ------ TIME/DATE OF STUDY: 10 : 56 7/ 2/1997 ************************** DESCRIPTION OF STUDY ************************** * STREET FLOW DEPTH CALC * C.B. #lA * DEPTH FOR GRATE AFTER SIDE OPENING ************************************************************************** **************************************************************************** >>>>STREETFLOW MODEL INPUT INFORMATION<<<< ---------------------------------------------------------------------------- CONSTANT STREET GRADE (FEET/FEET) _ . 038000 CONSTANT STREET FLOW(CFS) = 10 . 50 AVERAGE STREETFLOW FRICTION FACTOR (MANNING) _ . 015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH (FEET) = 38 . 00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12 . 00 INTERIOR STREET CROSSFALL (DECIMAL) _ . 015000 OUTSIDE STREET CROSSFALL (DECIMAL) _ . 019000 CONSTANT SYMMETRICAL CURB HEIGHT (FEET) _ . 67 CONSTANT SYMMETRICAL GUTTER-WIDTH (FEET) = 2 . 00 CONSTANT SYMMETRICAL GUTTER-LIP (FEET) _ . 03125 CONSTANT SYMMETRICAL GUTTER-HIKE (FEET) _ . 16700 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS ----------------------- STREET FLOW MODEL RESULTS : ---------------------------------------------------------------------------- STREET FLOW DEPTH (FEET) _ .42 HALFSTREET FLOOD WIDTH (FEET) = 13 . 63 AVERAGE FLOW VELOCITY (FEET/SEC. ) = 5 .37 PRODUCT OF DEPTH&VELOCITY = 2 .25 - �\tlYw�{LI•I 1\I\\Y M\Y wY,1„•r rt IMN w/rwI1 ..,,YY/••• r1•Ir.1�wN...O�w••\.alw _NN•,.t—•rWm rrw•.�rr.rr \w.W.I N111NYI,.�,rY/M1.\Ow rww�,..r.,Y. tM�i.uiislNmr�11 stirr�iw iui.�..Mw \i airei rill Wli•�r�ir��raN-�•a:.W,Y• � 1 •- • • �.i.\.\\l N M�1�r.NY NW Rw.� NNwN �N...\_-- • :.•w nti..1YPINNI1.Yr Y.NY►" \\^\ ww�ww amnia Yr� M la .11 la W1YY.wY■ .•Y 1\01 M ,Irr 1 YY=1f�R OwINNNYI v ..ram WIo W�..•,Y•Iw/ N/N lIW am Iww Yd•Yr•,1I/�qW M'/Mwaww.Y.Y,•fYw MW IYNINY rI•r rt .t�IMY./www,ewww...,,,,,r• tlwM us M■NNtlN�NNNw��Mw■�N■�/t■�■H1m OUI��1I1Y9r�U.��INI11 Mt/11A ltII III 111I1Il1 IBM N1 1NW1111I111I111�I1I11It1M1w1lId,%.Hw�1 imams IHM I Fuel"am ■tntt•ntIIMM4I"Ali 11�I1{M1111Y1■1"*WI�-.�eNA=■I1 lI.StlrY iU4tYt.I owns"::" .•\t.,ltIY,llll = IItllp UU WIIfMNMe: ■NNN■m■n.1ti11YIMY1I1 Ill:11 IM9111HIU1H■nnElul 1pIWYAYp-dO �r/NQO �Y N IpD mom IgI11q"%mus m� � annpU,U1• aIrYpiQm HI HIU1Inirut NU1 WrWQ 1 MYIUMn&MUIIUMI1NUUH1UU1UWIY1Y l mw/1OOW►_�IWR�Ip�MYrr --�3��- f1����'�•�:. a i:..:e���......�.... r�� �..N:.�.w M w^..M Y i1�n4.�N..f/ Ir. •�Y.I.YY�w.w.-.mow Y.w..fYY rAMNN 1..1.YN\NaN.\M.NHNNM wMNrY�NW�IN..p.lY..r/w.w w.w lwYMwRr ..NIa� Nww�wrO.r„YY.I w.RMr.NNIIMI1N.rI \. ---- �--� wNa.NW.oar.v.uNnHNu.�wrrnrIssall �a�w.Yw.Yr.r.ma,am w R�r,aww.NY,YIY•.rMw�Nw\urulwYl1rntl,wArnlR v/ww1lrN WNwAIr Y,w rM.1.o tl 'uflp,•iw JMF MEN . • w ww�www...IwwY•i•\.Ya.=1'/ .•wu-wWw/\IrYi.w�i�.i�1ww�ouwo.• Y....fY..r.�./1 1 MYINYINI aN.rlNr �Rrw.r�.YYrNr rwww1111w111a..rawr i-�'/u1N.• Ar1•s\w u\'�w1•w11•Y wrr r•w l•II•r,1�iiYll�tlw MMO�w�rI..YY,r•Iw•Ml illAYl'.'II,�r•••MtltN tII MYId�rwl,\MYIII� tlwwlrw�•r/YRR q w.A1t1P1./I..,Ir•IM II lYY1wN11w1•��,•M,M d�rMA...Y.rrM MMMY�wq.,.rYW 1II"�'wIw w'I Alww.t..r M/II••11vw w.w rrr OM tlYI Im t.t�ww�•MlYtlrtl tlMMtl1•`wt1•..r•wo tt✓ rllww./.wr wu Ir•ww•Y m.a,.lrewm l�IMMaA. —_—=�_�'_�:� Gass:•:_���� .�.���_�� -- - =-MEN __R�ww.l•.MGM'Y•��.i�wN������lY.�.�I•MM�w�M10Y.�'I.�wr�~YYNN..�Y:.Y::� r�/�YlI..NI../YN AN W 1.n11YHN...Y'.YN w W.RN I.AI I.IY wlrPwww....r.••.\'NNw 111111IIYHI,.w Y I1\w I•\r1 a INY WM Y.r RI.•\nsw I we wwwwww N..Idr1•N ri. www�■.YI,,A••.//\\{a.tgN nnYlw•.../•••YYIY W�.\Y.��YI.IMH Nf..Y.M1 .R•.MrYNw.NN.....Y.•R �!•M�//••I/•\...F"FINN/IHHI,��IIY•"so .........r M�IwI\y NwwY...,NYY Y MtlMMr)Y A,I,•t'.•I I•I\II01/w/IIIYII•■•'Il,Itl N IN1••Y Yw YfH AO Ir,•�ttlw MMtlwwYw..•.Yr•,w MMMmw..r•sum/M tlV YN H11111111••IAYYI w IM ton Y•w.1.,i,rl•r trlMt/MYMIrwY,.•,,,I\tl IYY,YwYYIq•1'aN w�Ylll/1111,•I,.,tYllll wow■w111.N WYrr•trltlt•w MMMMwwY„••NtI1Y MMMtAwwtltl tw Y,II•,•tl IIu w II wl ltYl.N I.••YM tl IM Ww ws f11.rw.tl Nt1M tttr ttttl ttrMtlwww w..•.•11„I•N MOM Owww•11,,,ANMI'tlww111111 t11111•/,Y•M•.M Itl Y.w wN1UW,Wr WY�ItlwtfMMtlwwww■.,Y••■■,tl NMNNMtItV11/I,V•IM. Muum"11111111.A1111•tt.QI111MMIYO NI•,wwY.Mt•�Mtw ttlNNwwwww.,•1•H.lt1 NNNN0SENDB'AIWAII A11111111IIIIIIIU11111•ltll•HI1110 NI, 11111UL tw1M••.M IINtINO■Nt•Nww RM�U,t•YN•M NNNNWiWA.'JM1f'Q•IIIIIU1111111N1/1111•I11111 W11111 WIN UM saw"small NY 1NtINN mmon.Y...U1••l1 ■NNNNNNMIN /If""aINUIIIIHIIIIIIIU 1Nfl111111t III IIIw M111 ttI11lYYlMNt•HI[NU■NNN�tl■N■..tttllll ■NNN.N��f.11/li•1Iin ....11111111111A111U•UII II IIt IIIM Y1l1ummsMii.1 muluNNNNMNW■1.Y•tlil ■NNNNNn'AI/,fYIfAI/UIIIIIIIIIIIIIIIIUUlnl111111 IHINR Rill UMUIYIll11R1111NUNI•J ■NNNNN>1C11[IOIfAU11U1111111I1IIIIIIIY nU11U1111 IUNIY NIUtlH11UY0i111f1111NNN\L1.:1JlUCCJ1�'C_fll NNNNN�NN1/11111II11111•IIIIIIIIIIIIIIIH/11//11111Y III WH IIit11UUNNU11111HMUlUY■NUMYWUnIl,l11 • 'IGRATING CAPACITIES To Be • For C.B. • 5.2 WSPG Input File - Line "'IA" _ T1 PARADISE CHEVROLET T2 25-YEAR HYDRAULICS T3 OFF-SITE STORM DRAIN - LINE "1A" SO .001285.00 1 1285.00 R 192.501288.40 1 .013 .00 .00 0 WE 192.501288.40 2 .500 SH 192.501288.40 2 1288.40 CD 1 4 0 .00 2.00 .00 .00 .00 .00 CD 2 3 0 .00 4 .50 3.00 .00 .00 .00 Q 27.0 .0 23.01\hydro\st hydrology report.doc page 15 5.3 WSPG Edit File - Line "1A" 1 F0515P WA EP SUPFACE "r F•_,FILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV '1(I1 Y(Z) Y(31 Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIERS WIDTH DIAMETER WIDTH DROP CD 1 4 2.00 CD 2 3 0 .00 4.50 3.00 .00 .00 .00 1 F O S 1 S P PAGE NO 1 WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS - PARADISE CHEVROLET HEADING LINE NO 2 IS - 25-YEAR HYDRAULICS HEADING LINE NO 3 IS - OFF-SITE STORM DRAIN - LINE "1A" 1 F 0 5 1 5 P PAGE NO WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 I5 A SYSTEM OUTLET U/S DATA STATION INVERT SECT W S ELEV .00 1285.00 1 1285.00 ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H I92.50 1.88.40 1 .013 .00 .00 .00 0 ELEMENT NO 3 IS A WALL ENTRANCE U/S DATA STATION INVERT SECT FP 192.50 1288.40 _ .500 ELEMENT NO 4 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT W S ELEV 192.50 1288.40 2 12Be.40 23.O11hydrolst_hydrology report.doc page 16 5.4 WSPG Ouput File - Line "W' F0515P PAGE 1 _ WATER SURFACE PROFILE LISTING PARADISE CHEVROLET 25-YEAR HYDRAULICS OFF-SITE STORM DRAIN - LINE '1A' STATION INVERT DEPTH W.S. 0 VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR _ ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER L/ELEM SO SF AVE NF NORM DEPTH ZR ................................................................................................................................... .00 1285.00 1.480 1206.480 27.0 10.83 1.621 1288.301 .00 1.808 2.00 .00 .00 0 .0 29.31 .01766 .017681 .52 1.480 .00 29.37 1205.52 1.480 1206.999 27.0 10.83 1.821 1288.820 .00 1.808 2.00 .00 .00 0 .0 110.04 .01766 .016957 1.87 1.480 .00 139.41 1287.46 1.535 1288.997 21.0 10.43 1.689 1290.686 .00 1.808 2.00 .00 .00 0 .0 34.62 .01766 .015450 .53 1.480 .00 174.03 1288.07 1.612 1289.686 27.0 9.94 1.536 1291.222 .00 1.808 2.00 .00 .00 0 .0 14.22 .01766 .014031 .20 1.480 .00 188.25 1288.32 1.700 1290.025 27.0 9.48 1.397 1291.422 .00 1.808 2.00 .00 .00 0 .0 4.25 .01766 .012946 .06 1.480 .00 192.50 1289.40 1.808 1290.208 27.0 9.04 1.268 1291.416 .00 1.808 2.00 .00 .00 0 .0 WALL ENTRANCE .00 192.50 1288.40 4.073 1292.473 27.0 2.21 .076 1292.549 .00 1.360 4.50 3.00 .00 0 .0 i 1 23.011hydrolst_hydrology report.doc page 17 ��f ..-� .-. _ � t7 a i, . 4� C'� a� _