HomeMy WebLinkAboutHYDROLOGY STUDY FOR PARADISE CHEVROLET SIP 7-7-1997 V. &).0,6
WWI
-
y � y
prepared for:
PARADISE CHEVROLET
STREET IMPROVEMENT PLANS
PROJECT: Paradise Chevrolet
ADDRESS: Casino Drive
City of Lake Elsinore,
County of Riverside,
California
REFERENCE: TENT. TRACT NO. 28552
DATE: July 7, 1997
prepared by:
QPpF ESSl0yQ�
A. tij�oF2c
cr_ C-23971 1100 S.COAST HWY,#211
Exp. 12-31-97 LAGUNA BEACH,CA 92651
* ph: 714.376.6407
* fax: 714.376.6417
sl CIV\L NAP
OF CJN�
RICHARD A. MOORE. RCE 23971 DATE
_ -
page
1.0 Discussion.....................................................................................................1-3
1.1 Purpose................................................................................................................1
1.2 Methodology..................................................................................................... 1-2
Assumptions and Design Criteria
Reference Plans
1.3 Summary.............................................................................................................3
2.0 Location Map...................................................................................................4
3.0 Hydrology Map................................................................................................5
4.0 Rational Method Study................................................................................6-13
4.1 25-Year ............................................................................................................6-13
5.0 Storm Drain Hydraulics..............................................................................14-17
5.1 Catch Basin Inlet#1 A Capacity Calculation.................................................14(a-e)
5.2 WSPG Input File - Line "IA"............................................................................15
5.3 WSPG Edit File -Line "lA................................................................................16
5.4 WSPG Output File - Line "IA" .........................................................................17
23.OMydro%st hydrology report.doc
77,
1.1 Purpose
The purpose of this study is to determine the storm runoff to the south of the proposed
site after the site is precise-graded per proposed plans submitted by NICE Consultants. At
the southeasterly end of the proposed improvements to Casino Drive, along the
northeasterly curb, there will be a concentration of flows from the following tributary
areas: one-half of Casino Drive along the improvement frontage, a portion of the
proposed on-site improvements in Parcel 1 (the proposed dealership) and a substantial
amount of drainage from the Elsinore Apartments, being constructed just northerly
(upstream) of the subject site.
Most of the subject property will not drain into Casino Drive. As stated in the hydrology
report for the rough-grading, the southerly portion of the entire 10-acre site was graded to
create a flat pad as a borrow site for the northerly portion. The southerly pad drains via
overland flow into a desilting basin that outlets directly into the San Jacinto River, which
abuts the property to the south. The property also abuts the I-15 to the east. A portion of
runoff from this freeway flows onto our site. This runoff was studied in the
aforementioned previous report and is intercepted by a storm drain and carried to an
existing 36" CMP that drains southerly under Casino Drive. The remainder of the site
will drain via overland flow into two on-site proposed catch basins and also into two
proposed undersidewalk drains that will outlet into Casino Drive.
The City of Lake Elsinore has determined that a catch basin located at the southerly end
of the street improvements must handle 85% of the 25-year storm runoff for the tributary
areas. It is the purpose of this report to determine that need, and evaluate the proposed
system.
1.2 Methodology
Assumptions and Design Criteria
1. A 25-year hydrology analysis was completed for sizing drainage facilities.
2. The hydrology was done utilizing the computer program "Rational Method
Hydrology - Riverside/San Diego County Methods - System Model" by
Advanced Engineering Software (aes) Ver. 1.5A, Release Date: 01/01/95
(Reference: Riverside County Flood Control and Water Conservation District
Hydrology Manual).
3. The site in questions lies on Plate C-1.41 of the Hydrologic Soils Group Map.
The Soil Group is Group B.
4. Pipe capacities were analyzed the computer program "WSPG."
23.011hydrMst_hydrology report.doc page 1
5. The catch basin size in Casino Drive with Q25, in flowby condition, was
verified using the chart by the U.S. Bureau of Public Roads, Capacity for Curb
Inlet on Continuous Grade.
Reference Plans
1. "As-Built" rough grading plans for the subject site prepared by NICE
Consultants
2. Proposed precise grading plans for the subject site prepared by MCE
Consultants.
3. Proposed street improvement plans for the subject site prepared by MCE
Consultants.
4. Hydrology Map for the proposed site improvements prepared by MCE
Consultants. The map is included in this study for reference.
5. Aerial Topography of the site as flown in August, 1996.
23.01\hydrMst hydrology report.doc page 2
1.3 Summary
The capacity of Catch Basin #1 A is determined by the U.S. Public Roads chart and the
25-year hydrology (flowby condition). The 25-year hydrology gives the maximum flow
that in front of CB #lA of 31.8 cfs. This means that the catch basin will have to intercept
(0.85 * 31.8) 27.0 cfs. From the attached calculations it is determined that a 28-foot long
catch basin will pick up 27.6 cfs.
The capacity of the storm drain line are determined by analysis of the 25-year hydrology
flows. These flows were inputted into WSPG and the output files are included toward the
end of this report.
For Line "I A", the highest water surface elevation in the pipe on site is approximately
1292.5 at CB#IA.
23.011hydroW—hydrology report.doc page 3
i LOCATION _ ._ , Y. .:
LUGONIA
gee
CRAMSITE
FRANKLIN
LAKESHORE
i
r
of
zi
15
LAKE w
ELSINORE f
23.01\hydro\st_hydrology report.doc page 4
11
1HYDROLOGYMA
23.01\hydrolst_hydrology report.doc page 5
!Cl- Ioii�M1tlai� �ar-..z a--<<.•• ..a--c_..:ac -.' ea`�%+"'. '�ai.:3Ei
4.1 25-YEAR
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982-95 Advanced Engineering Software (aes)
Ver. 1.5A Release Date: 01/01/95 License ID 1426
Analysis prepared by:
MCE CONSULTANTS
1100 S. Coast Hwy. , #211
Laguna Beach, CA 92651
(714) 376-6407
************************** DESCRIPTION OF STUDY **************************
* PARADISE CHEVROLET
* CASINO DRIVE, LAKE ELSINORE
* 25-YEAR HYDROLOGY - CASINO DRIVE
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
FILE NAME: C: \TEMP\ST Q25.DAT
TIME/DATE OF STUDY: 8:43 7/ 2/1997
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90
10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.320
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = .980
100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.730
100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.500
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE _ .4809628
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE _ .5084069
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 25.00 1-HOUR INTENSITY(INCH/HOUR) = 1.1637
SLOPE OF INTENSITY DURATION CURVE = .4855
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
FLOW PROCESS FROM NODE 10.00 TO NODE 10. 10 IS CODE = 22
----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
USER SPECIFIED Tc(MIN. ) = 9.400
25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.862
SOIL CLASSIFICATION IS "B"
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8759
SUBAREA RUNOFF(CFS) = 22.81
23.011hydrolst_hydro1ogy report.doc page 6
Elm
TOTAL AREA(ACRES) = 9.10 TOTAL RUNOFF(CFS) = 22.81
FLOW PROCESS FROM NODE 10.10 TO NODE 10.20 IS CODE = 6
----------------------------------------------------------------------------
>>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««<
UPSTREAM ELEVATION = 1336.10 DOWNSTREAM ELEVATION = 1327.00
STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 8.
STREET HALFWIDTH(FEET) = 38.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00
INTERIOR STREET CROSSFALL(DECIMAL) = .020
OUTSIDE STREET CROSSFALL(DECIMAL) = .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 23.11
STREETFLOW MODEL RESULTS:
STREET FLOWDEPTH(FEET) _ .51
HALFSTREET FLOODWIDTH(FEET) = 17.47
AVERAGE FLOW VELOCITY(FEET/SEC. ) = 7.13
PRODUCT OF DEPTH&VELOCITY = 3.62
STREETFLOW TRAVELTIME(MIN) = .40 TC(MIN) = 9.80
25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.805
SOIL CLASSIFICATION IS "B"
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8755
SUBAREA AREA(ACRES) _ .24 SUBAREA RUNOFF(CFS) _ .59
SUMMED AREA(ACRES) = 9.34 TOTAL RUNOFF(CFS) = 23.40
END OF SUBAREA STREETFLOW HYDRAULICS:
DEPTH(FEET) = .51 HALFSTREET FLOODWIDTH(FEET) = 17.47
FLOW VELOCITY(FEET/SEC. ) = 7.22 DEPTH*VELOCITY = 3.67
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
FLOW PROCESS FROM NODE 10.20 TO NODE 10.20 IS CODE = 10
----------------------------------------------------------------------------
»»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
FLOW PROCESS FROM NODE 2.10 TO NODE 2.20 IS CODE = 21
----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
----------------------------------------------------------------------------
----------------------------------------------------------------------------
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K* [ (LENGTH**3) / (ELEVATION CHANGE) ] **.2
INITIAL SUBAREA FLOW-LENGTH = 525.00
UPSTREAM ELEVATION = 1337.50
DOWNSTREAM ELEVATION = 1329. 10
ELEVATION DIFFERENCE = 8.40
TC = .303* [ ( 525.00**3) /( 8.40) ] ** .2 = 8.488
25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.008
SOIL CLASSIFICATION IS "B"
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8767
SUBAREA RUNOFF(CFS) = 1.85
TOTAL AREA(ACRES) = .70 TOTAL RUNOFF(CFS) = 1.85
23.01\hydro\st hydrology report.doc page 7
FLOW PROCESS FROM NODE 2.20 TO NODE 10.20 IS CODE = 4
----------------------------------------------------------------------------
>>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE<<<<<
DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.7 INCHES
PIPEFLOW VELOCITY(FEET/SEC. ) = 9.0
UPSTREAM NODE ELEVATION = 1329.10
DOWNSTREAM NODE ELEVATION = 1327.00
FLOWLENGTH(FEET) = 30.00 MANNING'S N = .013
GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
PIPEFLOW THRU SUBAREA(CFS) = 1.85
TRAVEL TIME(MIN. ) _ .06 TC(MIN. ) = 8.54
FLOW PROCESS FROM NODE 10.20 TO NODE 10.20 IS CODE = 11
----------------------------------------------------------------------------
>>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<<
** MAIN STREAM CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE)
1 1.85 8.54 2.998 .70
** MEMORY BANK # 1 CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE)
1 23.40 9.80 2.805 9.34
++++++++++++++++*++*++++++++*+++*WARNING+++++++++++++++++++++++++++++++*++
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
++*++*+++++++++++++++++++**++++++++++++++++++++++++++++*++++++++++++++++*+
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
1 22.26 8.54 2.998
2 25.13 9.80 2.805
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 25.13 Tc(MIN. ) = 9.80
TOTAL AREA(ACRES) = 10.04
FLOW PROCESS FROM NODE 10.20 TO NODE 10.30 IS CODE = 6
----------------------------------------------------------------------------
>>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««<
UPSTREAM ELEVATION = 1327.00 DOWNSTREAM ELEVATION = 1325.60
STREET LENGTH(FEET) = 90.00 CURB HEIGHT(INCHES) = 8.
STREET HALFWIDTH(FEET) = 38.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00
23.011hydrotst-hydrology report.doc page 8
INTERIOR STREET CROSSFALL(DECIMAL) = .020
OUTSIDE STREET CROSSFALL(DECIMAL) = .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 25.29
STREETFLOW MODEL RESULTS:
STREET FLOWDEPTH(FEET) _ .62
HALFSTREET FLOODWIDTH(FEET) = 23.09
AVERAGE FLOW VELOCITY(FEET/SEC. ) = 4 .58
PRODUCT OF DEPTH&VELOCITY = 2.84
STREETFLOW TRAVELTIME(MIN) = .33 TC(MIN) = 10.12
25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.761
SOIL CLASSIFICATION IS "B"
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8752
SUBAREA AREA(ACRES) _ .13 SUBAREA RUNOFF(CFS) _ .31
SUMMED AREA(ACRES) = 10. 17 TOTAL RUNOFF(CFS) = 25.45
END OF SUBAREA STREETFLOW HYDRAULICS:
DEPTH(FEET) = .62 HALFSTREET FLOODWIDTH(FEET) = 23.09
FLOW VELOCITY(FEET/SEC. ) = 4.61 DEPTH*VELOCITY = 2.86
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
FLOW PROCESS FROM NODE 10.30 TO NODE 10.30 IS CODE = 10
----------------------------------------------------------------------------
>>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««<
----------------------------------------------------------------------------
----------------------------------------------------------------------------
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
FLOW PROCESS FROM NODE 6.10 TO NODE 6.20 IS CODE = 21
----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
----------------------------------------------------------------------------
----------------------------------------------------------------------------
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K* [ (LENGTH**3) / (ELEVATION CHANGE) ] **.2
INITIAL SUBAREA FLOW-LENGTH = 200.00
UPSTREAM ELEVATION = 1329.40
DOWNSTREAM ELEVATION = 1327.00
ELEVATION DIFFERENCE = 2.40
TC = .303* [ ( 200.00**3) / ( 2.40) ] **.2 = 6. 112
25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.528
SOIL CLASSIFICATION IS "B"
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8794
SUBAREA RUNOFF(CFS) = 1.12
TOTAL AREA(ACRES) _ .36 TOTAL RUNOFF(CFS) = 1. 12
FLOW PROCESS FROM NODE 6.20 TO NODE 10.30 IS CODE = 9
----------------------------------------------------------------------------
»»>COMPUTE "V" GUTTER FLOW TRAVELTIME THRU SUBAREA««<
UPSTREAM NODE ELEVATION = 1327.00
DOWNSTREAM NODE ELEVATION = 1325.60
CHANNEL LENGTH THRU SUBAREA(FEET) = 25.00
"V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) _ . 120
PAVEMENT LIP(FEET) = .040 MANNING'S N = .0150
PAVEMENT CROSSFALL(DECIMAL NOTATION) = .02000
23.011hydro�st hydrology report.doc page 9
MAXIMUM DEPTH(FEET) = 1.00
25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.504
SOIL CLASSIFICATION IS "B"
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8793
TRAVELTIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC) = 4 . 95
AVERAGE FLOWDEPTH(FEET) = .16 FLOODWIDTH(FEET) = 3.00
"V" GUTTER FLOW TRAVEL TIME(MIN) _ .08 TC(MIN) = 6.20
SUBAREA AREA(ACRES) _ .00 SUBAREA RUNOFF(CFS) = .00
SUMMED AREA(ACRES) _ .36 TOTAL RUNOFF(CFS) = 1. 12
NOTE:TRAVELTIME ESTIMATES BASED ON NORMAL
DEPTH EQUAL TO [GUTTER-HIKE + PAVEMENT LIP]
END OF SUBAREA "V" GUTTER HYDRAULICS:
DEPTH(FEET) = .16 FLOODWIDTH(FEET) = 3.00
FLOW VELOCITY(FEET/SEC. ) = 4.95 DEPTH*VELOCITY = .79
FLOW PROCESS FROM NODE 10.30 TO NODE 10.30 IS CODE = 11
----------------------------------------------------------------------------
»»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<<<<
** MAIN STREAM CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE)
1 1.12 6.20 3.504 .36
** MEMORY BANK # 2 CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE)
1 25.45 10.12 2.761 10. 17
********a************+****++*****WARNING*******+*a******aa******+****+****
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
**************************************************************************
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
1 16.69 6.20 3.504
2 26.33 10.12 2.761
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 26.33 Tc(MIN. ) = 10.12
TOTAL AREA(ACRES) = 10.53
FLOW PROCESS FROM NODE 10.30 TO NODE 10.40 IS CODE = 6
----------------------------------------------------------------------------
»»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<<
UPSTREAM ELEVATION = 1325. 60 DOWNSTREAM ELEVATION = 1316.40
STREET LENGTH(FEET) = 225.00 CURB HEIGHT(INCHES) = 8.
STREET HALFWIDTH(FEET) = 38.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00
INTERIOR STREET CROSSFALL(DECIMAL) _ .020
23.01\hydro\st hydrology report.doc page 10
S'
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 26.71
STREETFLOW MODEL RESULTS:
STREET FLOWDEPTH(FEET) _ .54
HALFSTREET FLOODWIDTH(FEET) = 19.16
AVERAGE FLOW VELOCITY(FEET/SEC. ) = 6. 92
PRODUCT OF DEPTH&VELOCITY = 3.75
STREETFLOW TRAVELTIME(MIN) _ .54 TC(MIN) = 10.67
25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.692
SOIL CLASSIFICATION IS "B"
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8748
SUBAREA AREA(ACRES) _ .33 SUBAREA RUNOFF(CFS) _ .78
SUMMED AREA(ACRES) = 10.86 TOTAL RUNOFF(CFS) = 27.10
END OF SUBAREA STREETFLOW HYDRAULICS:
DEPTH(FEET) _ .55 HALFSTREET FLOODWIDTH(FEET) = 19.72
FLOW VELOCITY(FEET/SEC. ) = 6.65 DEPTH*VELOCITY = 3.67
FLOW PROCESS FROM NODE 10.40 TO NODE 10.40 IS CODE = 10
----------------------------------------------------------------------------
>>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 ««<
FLOW PROCESS FROM NODE 7. 10 TO NODE 7.20 IS CODE = 21
----------------------------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K* [ (LENGTH**3) / (ELEVATION CHANGE) ] **.2
INITIAL SUBAREA FLOW-LENGTH = 370.00
UPSTREAM ELEVATION = 1330.30
DOWNSTREAM ELEVATION = 1322.80
ELEVATION DIFFERENCE = 7.50
TC = .303* [ ( 370.00**3) /( 7.50) ] **.2 = 7.039
25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.294
SOIL CLASSIFICATION IS "B"
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8783
SUBAREA RUNOFF(CFS) = 3.07
TOTAL AREA(ACRES) = 1.06 TOTAL RUNOFF(CFS) = 3.07
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
FLOW PROCESS FROM NODE 7.20 TO NODE 10.40 IS CODE = 4
----------------------------------------------------------------------------
»»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<<
»»>USING USER-SPECIFIED PIPESIZE««<
DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.4 INCHES
PIPEFLOW VELOCITY(FEET/SEC. ) = 16.5
UPSTREAM NODE ELEVATION = 1322.80
DOWNSTREAM NODE ELEVATION = 1316.40
FLOWLENGTH(FEET) = 25.00 MANNING'S N = .013
GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
23.01thydrMst-hydrology report.doc page 11
i{
mll
PIPEFLOW THRU SUBAREA(CFS) = 3.07
TRAVEL TTME(MIN. ) _ .03 TC(MTN. ) - 7.06
FLOW PROCESS FROM NODE 10.40 TO NODE 10.40 IS CODE = 11
• ----------------------------------------------------------------------------
>>>>>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY««<
** MAIN STREAM CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE)
1 3.07 7.06 3.288 1.06
** MEMORY BANK # 3 CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE)
1 27. 10 10.67 2.692 10.86
*++**+*+++++**++++++++++++++*+*++WARNING++++++++++++++++++*++++++*++++++++
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN. ) (INCH/HOUR)
1 21.01 7.06 3.288
2 29.61 10.67 2.692
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 29.61 Tc(MIN. ) = 10.67
TOTAL AREA(ACRES) = 11.92
FLOW PROCESS FROM NODE 10.40 TO NODE 10.50 IS CODE = 6
----------------------------------------------------------------------------
>>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««<
UPSTREAM ELEVATION = 1316.40 DOWNSTREAM ELEVATION = 1292.10
STREET LENGTH(FEET) = 590.00 CURB HEIGHT(INCHES) = 8.
STREET HALFWIDTH(FEET) = 38.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.00
INTERIOR STREET CROSSFALL(DECIMAL) _ .020
OUTSIDE STREET CROSSFALL(DECIMAL) _ .020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
**TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 30.71
STREETFLOW MODEL RESULTS:
STREET FLOWDEPTH(FEET) _ .56
HALFSTREET FLOODWIDTH(FEET) = 20.28
AVERAGE FLOW VELOCITY(FEET/SEC. ) = 7. 14
PRODUCT OF DEPTH&VELOCITY = 4 .02
STREETFLOW TRAVELTIME(MIN) = 1.38 TC(MIN) = 12.04
25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.538
23.011hydro\st hydrology report.doc page 12
SOIL CLASSIFICATION IS "B"
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8737
SUBAREA AREA(ACRES) _ .99 SUBAREA RUNOFF(CFS) = 2.20
SUMMED AREA(ACRES) = 12.91 TOTAL RUNOFF(CFS) = 31.81
END OF SUBAREA STREETFLOW HYDRAULICS:
DEPTH(FEET) _ .58 HALFSTREET FLOODWIDTH(FEET) = 20.84
FLOW VELOCITY(FEET/SEC. ) = 7.02 DEPTH*VELOCITY = 4.03
END OF RATIONAL METHOD ANALYSIS
23.011hydro\st hydrology report.doc page 13
5.1 Catch Basin Inlet #1A Capacity Calculation
23.01\hydro\st_hydrology report.doc page 14
C . B .
CURB OPENING ( Interception )
Given: (a) discharge Q - _ �� CFS
(b) street slope S
(c) curb type "A- ' "D"
(d) half street width ft.
Solution:
Q/P- /( ) = Therefore y=
Q /L = C). r5�
L, = 7� i / •�` _ � ) 1 (L for.total interception)
TRY: LP= fte
YL
Q/Q
'`P= X "� G = J�� CFS (Intercepted)
Qc= �� ,G(� - . w = CFS(Carryover) .� ✓ .�` ✓ I �,
P��,�a� -35-
****************************************************************************
HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
(C) Copyright 1982-95 Advanced Engineering Software (aes)
Ver. 5 . 1A Release Date : 08/01/95 License ID 1426
Analysis prepared by:
MCE Consultants
One Venture, Suite 220
Irvine, CA 92718
ph: 714-753-9087
----------------------------------------------------------------------------
TIME/DATE OF STUDY: 10 :48 7/ 2/1997
************************** DESCRIPTION OF STUDY **************************
* STREET FLOW DEPTH CALL
* C.B. #lA
**************************************************************************
****************************************************************************
>>>>STREETFLOW MODEL INPUT INFORMATION<<
----------------------------------------------------------------------------
CONSTANT STREET GRADE (FEET/FEET) _ . 038000
CONSTANT STREET FLOW(CFS) = 31 . 80
AVERAGE STREETFLOW FRICTION FACTOR(MANNING) _ . 015000
CONSTANT SYMMETRICAL STREET HALF-WIDTH (FEET) = 38 . 00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12 . 00
INTERIOR STREET CROSSFALL (DECIMAL) _ . 015000
OUTSIDE STREET CROSSFALL (DECIMAL) _ . 019000
CONSTANT SYMMETRICAL CURB HEIGHT (FEET) _ . 67
CONSTANT SYMMETRICAL GUTTER-WIDTH (FEET) = 2 . 00
CONSTANT SYMMETRICAL GUTTER-LIP (FEET) _ . 03125
CONSTANT SYMMETRICAL GUTTER-HIKE (FEET) _ . 16700
FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS
--------------------
STREET FLOW MODEL RESULTS :
----------------------------------------------------------------------------
STREET FLOW DEPTH(FEET) _ . 58
HALFSTREET FLOOD WIDTH (FEET) = 21. 87
AVERAGE FLOW VELOCITY(FEET/SEC. ) = 6 . 71
PRODUCT OF DEPTH&VELOCITY = 3 . 87
DEPTH OF FLOW -y - FEET '
01 CI6 .03 04 .05 .06 06 .10 .2 .3 4 .s 6 0 to
Ct DISCHARGE PER FOOT OF
_�. LENGTH OF CURB OPENING - '_ -.-_'- - -'.�� r -
_-I- INLETS t:BEN INTERCEPTING
r OF GUTTER FLOW
I r ; r- -
'
. -
/o./
��-5 1 10
.06
Frill ^j� O
/
i --t- I� os
+;1 .oa
03
• � I f� � I I,I � I I -
.02
.01
1.0
/y-7 6
PARTIAL INTER- i --- �f -I-`
CEPTION RATIO.
FOR INLETS OF L p � I , - I .3 Q
LENGTH LESS
THAN L j ' ,/ I I
• .05 .06 .08 .10 .2 .3 !t .5 .6 .8 L010
WL TABLE M
BUREAU OF PUBLIC ROADS CAPACITY OF CURB OPEN=NG INLETS
DIVISION Two . WASH.,D. C. -34- - ON CONTINUOUS GRADE
****************************************************************************
HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
(C) Copyright 1982-95 Advanced Engineering Software (aes)
Ver. 5 . 1A Release Date : 08/01/95 License ID 1426
Analysis prepared by:
MCE Consultants
One Venture, Suite 220
Irvine, CA 92718
ph: 714-753-9087
---------------------------------------------------------------------- ------
TIME/DATE OF STUDY: 10 : 56 7/ 2/1997
************************** DESCRIPTION OF STUDY **************************
* STREET FLOW DEPTH CALC
* C.B. #lA
* DEPTH FOR GRATE AFTER SIDE OPENING
**************************************************************************
****************************************************************************
>>>>STREETFLOW MODEL INPUT INFORMATION<<<<
----------------------------------------------------------------------------
CONSTANT STREET GRADE (FEET/FEET) _ . 038000
CONSTANT STREET FLOW(CFS) = 10 . 50
AVERAGE STREETFLOW FRICTION FACTOR (MANNING) _ . 015000
CONSTANT SYMMETRICAL STREET HALF-WIDTH (FEET) = 38 . 00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12 . 00
INTERIOR STREET CROSSFALL (DECIMAL) _ . 015000
OUTSIDE STREET CROSSFALL (DECIMAL) _ . 019000
CONSTANT SYMMETRICAL CURB HEIGHT (FEET) _ . 67
CONSTANT SYMMETRICAL GUTTER-WIDTH (FEET) = 2 . 00
CONSTANT SYMMETRICAL GUTTER-LIP (FEET) _ . 03125
CONSTANT SYMMETRICAL GUTTER-HIKE (FEET) _ . 16700
FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS
-----------------------
STREET FLOW MODEL RESULTS :
----------------------------------------------------------------------------
STREET FLOW DEPTH (FEET) _ .42
HALFSTREET FLOOD WIDTH (FEET) = 13 . 63
AVERAGE FLOW VELOCITY (FEET/SEC. ) = 5 .37
PRODUCT OF DEPTH&VELOCITY = 2 .25
- �\tlYw�{LI•I 1\I\\Y M\Y wY,1„•r rt IMN w/rwI1 ..,,YY/•••
r1•Ir.1�wN...O�w••\.alw _NN•,.t—•rWm
rrw•.�rr.rr
\w.W.I N111NYI,.�,rY/M1.\Ow rww�,..r.,Y.
tM�i.uiislNmr�11 stirr�iw iui.�..Mw
\i airei rill Wli•�r�ir��raN-�•a:.W,Y• �
1 •- • • �.i.\.\\l N M�1�r.NY NW Rw.� NNwN �N...\_-- •
:.•w nti..1YPINNI1.Yr Y.NY►" \\^\ ww�ww amnia Yr�
M la .11 la W1YY.wY■ .•Y 1\01 M ,Irr 1 YY=1f�R
OwINNNYI v ..ram WIo W�..•,Y•Iw/
N/N lIW am Iww Yd•Yr•,1I/�qW M'/Mwaww.Y.Y,•fYw
MW IYNINY rI•r rt .t�IMY./www,ewww...,,,,,r•
tlwM us
M■NNtlN�NNNw��Mw■�N■�/t■�■H1m
OUI��1I1Y9r�U.��INI11
Mt/11A
ltII III
111I1Il1 IBM
N1 1NW1111I111I111�I1I11It1M1w1lId,%.Hw�1 imams
IHM I Fuel"am
■tntt•ntIIMM4I"Ali
11�I1{M1111Y1■1"*WI�-.�eNA=■I1 lI.StlrY iU4tYt.I owns"::"
.•\t.,ltIY,llll = IItllp UU WIIfMNMe:
■NNN■m■n.1ti11YIMY1I1 Ill:11 IM9111HIU1H■nnElul 1pIWYAYp-dO �r/NQO �Y
N IpD
mom IgI11q"%mus m� � annpU,U1•
aIrYpiQm
HI HIU1Inirut NU1 WrWQ 1
MYIUMn&MUIIUMI1NUUH1UU1UWIY1Y
l
mw/1OOW►_�IWR�Ip�MYrr
--�3��- f1����'�•�:. a i:..:e���......�....
r�� �..N:.�.w M w^..M Y i1�n4.�N..f/ Ir. •�Y.I.YY�w.w.-.mow Y.w..fYY
rAMNN 1..1.YN\NaN.\M.NHNNM wMNrY�NW�IN..p.lY..r/w.w w.w lwYMwRr ..NIa�
Nww�wrO.r„YY.I w.RMr.NNIIMI1N.rI \. ---- �--�
wNa.NW.oar.v.uNnHNu.�wrrnrIssall �a�w.Yw.Yr.r.ma,am
w R�r,aww.NY,YIY•.rMw�Nw\urulwYl1rntl,wArnlR v/ww1lrN WNwAIr Y,w rM.1.o
tl 'uflp,•iw
JMF
MEN
.
•
w ww�www...IwwY•i•\.Ya.=1'/ .•wu-wWw/\IrYi.w�i�.i�1ww�ouwo.•
Y....fY..r.�./1 1 MYINYINI aN.rlNr �Rrw.r�.YYrNr
rwww1111w111a..rawr i-�'/u1N.• Ar1•s\w u\'�w1•w11•Y wrr r•w l•II•r,1�iiYll�tlw
MMO�w�rI..YY,r•Iw•Ml illAYl'.'II,�r•••MtltN tII MYId�rwl,\MYIII�
tlwwlrw�•r/YRR q w.A1t1P1./I..,Ir•IM II lYY1wN11w1•��,•M,M d�rMA...Y.rrM
MMMY�wq.,.rYW 1II"�'wIw w'I Alww.t..r
M/II••11vw w.w rrr OM tlYI Im t.t�ww�•MlYtlrtl
tlMMtl1•`wt1•..r•wo tt✓ rllww./.wr wu Ir•ww•Y m.a,.lrewm l�IMMaA.
—_—=�_�'_�:� Gass:•:_���� .�.���_�� --
- =-MEN
__R�ww.l•.MGM'Y•��.i�wN������lY.�.�I•MM�w�M10Y.�'I.�wr�~YYNN..�Y:.Y::�
r�/�YlI..NI../YN AN W 1.n11YHN...Y'.YN w W.RN I.AI I.IY
wlrPwww....r.••.\'NNw 111111IIYHI,.w Y I1\w I•\r1 a INY WM Y.r RI.•\nsw I we wwwwww N..Idr1•N
ri. www�■.YI,,A••.//\\{a.tgN nnYlw•.../•••YYIY W�.\Y.��YI.IMH Nf..Y.M1 .R•.MrYNw.NN.....Y.•R
�!•M�//••I/•\...F"FINN/IHHI,��IIY•"so
.........r M�IwI\y NwwY...,NYY
Y MtlMMr)Y A,I,•t'.•I I•I\II01/w/IIIYII•■•'Il,Itl N IN1••Y Yw YfH AO Ir,•�ttlw MMtlwwYw..•.Yr•,w
MMMmw..r•sum/M tlV YN H11111111••IAYYI w IM ton Y•w.1.,i,rl•r trlMt/MYMIrwY,.•,,,I\tl
IYY,YwYYIq•1'aN w�Ylll/1111,•I,.,tYllll wow■w111.N WYrr•trltlt•w MMMMwwY„••NtI1Y
MMMtAwwtltl tw Y,II•,•tl IIu w II wl ltYl.N I.••YM tl IM Ww ws f11.rw.tl Nt1M tttr ttttl ttrMtlwww w..•.•11„I•N
MOM
Owww•11,,,ANMI'tlww111111 t11111•/,Y•M•.M Itl Y.w wN1UW,Wr WY�ItlwtfMMtlwwww■.,Y••■■,tl
NMNNMtItV11/I,V•IM. Muum"11111111.A1111•tt.QI111MMIYO NI•,wwY.Mt•�Mtw ttlNNwwwww.,•1•H.lt1
NNNN0SENDB'AIWAII A11111111IIIIIIIU11111•ltll•HI1110 NI,
11111UL tw1M••.M IINtINO■Nt•Nww RM�U,t•YN•M
NNNNWiWA.'JM1f'Q•IIIIIU1111111N1/1111•I11111 W11111 WIN UM saw"small NY 1NtINN mmon.Y...U1••l1
■NNNNNNMIN /If""aINUIIIIHIIIIIIIU 1Nfl111111t III IIIw M111 ttI11lYYlMNt•HI[NU■NNN�tl■N■..tttllll
■NNN.N��f.11/li•1Iin ....11111111111A111U•UII II IIt IIIM Y1l1ummsMii.1 muluNNNNMNW■1.Y•tlil
■NNNNNn'AI/,fYIfAI/UIIIIIIIIIIIIIIIIUUlnl111111 IHINR Rill UMUIYIll11R1111NUNI•J
■NNNNN>1C11[IOIfAU11U1111111I1IIIIIIIY nU11U1111 IUNIY NIUtlH11UY0i111f1111NNN\L1.:1JlUCCJ1�'C_fll
NNNNN�NN1/11111II11111•IIIIIIIIIIIIIIIH/11//11111Y III WH IIit11UUNNU11111HMUlUY■NUMYWUnIl,l11
•
'IGRATING CAPACITIES
To Be • For C.B. •
5.2 WSPG Input File - Line "'IA"
_ T1 PARADISE CHEVROLET
T2 25-YEAR HYDRAULICS
T3 OFF-SITE STORM DRAIN - LINE "1A"
SO .001285.00 1 1285.00
R 192.501288.40 1 .013 .00 .00 0
WE 192.501288.40 2 .500
SH 192.501288.40 2 1288.40
CD 1 4 0 .00 2.00 .00 .00 .00 .00
CD 2 3 0 .00 4 .50 3.00 .00 .00 .00
Q 27.0 .0
23.01\hydro\st hydrology report.doc page 15
5.3 WSPG Edit File - Line "1A"
1 F0515P
WA EP SUPFACE "r F•_,FILE - CHANNEL DEFINITION LISTING PAGE 1
CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV '1(I1 Y(Z) Y(31 Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10)
CODE NO TYPE PIERS WIDTH DIAMETER WIDTH DROP
CD 1 4 2.00
CD 2 3 0 .00 4.50 3.00 .00 .00 .00
1 F O S 1 S P PAGE NO 1
WATER SURFACE PROFILE - TITLE CARD LISTING
HEADING LINE NO 1 IS -
PARADISE CHEVROLET
HEADING LINE NO 2 IS -
25-YEAR HYDRAULICS
HEADING LINE NO 3 IS -
OFF-SITE STORM DRAIN - LINE "1A"
1 F 0 5 1 5 P PAGE NO
WATER SURFACE PROFILE - ELEMENT CARD LISTING
ELEMENT NO 1 I5 A SYSTEM OUTLET
U/S DATA STATION INVERT SECT W S ELEV
.00 1285.00 1 1285.00
ELEMENT NO 2 IS A REACH
U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H
I92.50 1.88.40 1 .013 .00 .00 .00 0
ELEMENT NO 3 IS A WALL ENTRANCE
U/S DATA STATION INVERT SECT FP
192.50 1288.40 _ .500
ELEMENT NO 4 IS A SYSTEM HEADWORKS
U/S DATA STATION INVERT SECT W S ELEV
192.50 1288.40 2 12Be.40
23.O11hydrolst_hydrology report.doc page 16
5.4 WSPG Ouput File - Line "W'
F0515P PAGE 1
_ WATER SURFACE PROFILE LISTING
PARADISE CHEVROLET
25-YEAR HYDRAULICS
OFF-SITE STORM DRAIN - LINE '1A'
STATION INVERT DEPTH W.S. 0 VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ ZL NO AVBPR
_ ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER
L/ELEM SO SF AVE NF NORM DEPTH ZR
...................................................................................................................................
.00 1285.00 1.480 1206.480 27.0 10.83 1.621 1288.301 .00 1.808 2.00 .00 .00 0 .0
29.31 .01766 .017681 .52 1.480 .00
29.37 1205.52 1.480 1206.999 27.0 10.83 1.821 1288.820 .00 1.808 2.00 .00 .00 0 .0
110.04 .01766 .016957 1.87 1.480 .00
139.41 1287.46 1.535 1288.997 21.0 10.43 1.689 1290.686 .00 1.808 2.00 .00 .00 0 .0
34.62 .01766 .015450 .53 1.480 .00
174.03 1288.07 1.612 1289.686 27.0 9.94 1.536 1291.222 .00 1.808 2.00 .00 .00 0 .0
14.22 .01766 .014031 .20 1.480 .00
188.25 1288.32 1.700 1290.025 27.0 9.48 1.397 1291.422 .00 1.808 2.00 .00 .00 0 .0
4.25 .01766 .012946 .06 1.480 .00
192.50 1289.40 1.808 1290.208 27.0 9.04 1.268 1291.416 .00 1.808 2.00 .00 .00 0 .0
WALL ENTRANCE
.00
192.50 1288.40 4.073 1292.473 27.0 2.21 .076 1292.549 .00 1.360 4.50 3.00 .00 0 .0
i
1
23.011hydrolst_hydrology report.doc page 17
��f
..-� .-.
_ �
t7
a
i, .
4�
C'�
a� _